

TBarCode/X
Barcode Generator Software for Linux®,

UNIX® and macOS®

Vers ion 11.9

Developer Manual

Apr i l 3, 2019

TEC-IT Datenverarbeitung GmbH

Hans-W agner-Strasse 6
A-4400 Steyr , Austr ia

t ++43 (0)7252 72720

f ++43 (0)7252 72720 77
of f ice@tec- i t .com

www.tec- i t .com

Page 2 of 19

TBarCode Library – Developer Manual

1 Content

1 Content 2

2 Disclaimer 3

3 Introduction 4
3.1 What is TBarCode? 4
3.2 What is TBarCode/X? 4
3.3 Scope of this Document 4
3.4 Restrictions of the Demo Version 5

4 Installation 6

5 General 7
5.1 TBarCode Library 7

5.1.1 C/C++ Header Files 7
5.1.2 Linking 7

5.2 TBarCode Framework (for Mac OS) 8
5.2.1 C/C++ Header Files 8
5.2.2 Compiling and Linking 8

5.3 LibTBarCode Java Interface 8

6 Using TBarCode 9
6.1 Important Functions 9
6.2 Calling Order 10
6.3 ANSI and UNICODE 10

7 C/C++ Sample Code 11

8 Custom Drawing Functions for Special Devices 12
8.1 Why Custom Drawing Functions? 12
8.2 The General Concept 12
8.3 Linear Barcodes & PDF417 12
8.4 2D Matrix Codes (Data Matrix, QR-Code, Aztec Code, etc.) 13

8.4.1 About Drawing 13
8.5 Postal Codes with Bars of Different Height 13

8.5.1 Barcode with 2 different heights 14
8.5.2 Barcodes with 3 different heights 14
8.5.3 Barcodes with 4 different heights 14
8.5.4 About Drawing 14

8.6 Control Patterns 15
8.6.1 Protruding Bars for EAN and UPC Codes 15
8.6.2 Increment and Decrement the Bar Width for EAN and UPC Codes 16

9 How to License TBarCode 17
9.1 Demo Limitations 17

10 Redistributing TBarCode 18
10.1 TBarCode as a Static Library 18
10.2 TBarCode as a Shared Library 18
10.3 TBarCode as a Framework (Mac OS) 18

11 Contact and Support Information 19

Page 3 of 19

TBarCode Library – Developer Manual

2 Disclaimer

The actual version of this product (document) is available as is. TEC-IT declines all warranties
which go beyond applicable rights. The licensee (or reader) bears all risks that might take place
during the use of the system (the documentation). TEC-IT and its contractual partners cannot be
penalized for direct and indirect damages or losses (this includes non-restrictive, damages through
loss of revenues, constriction in the exercise of business, loss of business information or any kind of
commercial loss), which is caused by use or inability to use the product (documentation), although
the possibility of such damage was pointed out by TEC-IT.

We reserve all rights to this document and the information contained therein. Reproduction,
use or disclosure to third parties without express authority is strictly forbidden.

Für dieses Dokument und den darin dargestellten Gegenstand behalten wir uns alle Rechte
vor. Vervielfältigung, Bekanntgabe an Dritte oder Verwendung außerhalb des vereinbarten
Zweckes sind nicht gestattet.

© 1998-2019
TEC-IT Datenverarbeitung GmbH
Hans-Wagner-Str. 6

A-4400 Austria
t.: +43 (0)7252 72720
f.: +43 (0)7252 72720 77
https://www.tec-it.com

http://www.tec-it.com/

Page 4 of 19

TBarCode Library – Developer Manual

3 Introduction

3.1 What is TBarCode?

TBarCode is a set of professional tools for the generation of bar codes. More than 100 different
symbologies (linear barcodes, 2D barcodes and stacked barcode variants) can be printed or
exported as graphics files. All industry formats are supported. The barcodes can be generated in
the highest possible resolution and quality.

TBarCode is available in several versions for different operating systems, applications and
programming environments.

The following versions are included in the Linux®/UNIX® setup:

TBarCode/X Barcode software for Linux and UNIX platforms. TBarCode/X includes:

 command-line tools,

 filter scripts,

 shared library

 Java interface (on request only)

Additionally the following products for the Microsoft® Windows platform are available:

TBarCode OCX A Microsoft® ActiveX® compliant barcode control. It can be used with
Microsoft® Office applications as well as by software developers.

TBarCode .NET A .NET barcode library for software developers. It includes barcode
controls for Windows Forms and ASP.NET 2.0.

TBarCode Library A dynamically linked library (DLL) for software developers.

3.2 What is TBarCode/X?

TBarCode/X is a software tool for barcode generation on Linux®/UNIX® and Mac OS®. It consists of
a command line tool, filter scripts, and the TBarCode Library for UNIX® or the TBarCode
Framework for Mac OS®. On request a Java interface is also available.

Whereas this document mainly covers the usage of the library, please refer to the „TBarCode/X
User Documentation“ for an in-depth description of the other parts (see chapter 4 Installation).

The TBarCode/X setup for Linux/UNIX includes the TBarCode Library as static library and as
shared library.

The TBarCode/X setup for Mac OS® includes the TBarCode Framework.

TBarCode Library for UNIX is also often called “LibTBarCode”.

3.3 Scope of this Document

This document explains how you can use the TBarCode Library for UNIX® and TBarCode
Framework for Mac OS® in your own applications. The complete application programming interface
(API) is described in the TBarCode Library Developer Reference.

Page 5 of 19

TBarCode Library – Developer Manual

3.4 Restrictions of the Demo Version

In the demo version the barcodes will be drawn with a demo-hint. That means that the word “Demo”
or the phrase “www.tec-it.com” is drawn partially over the barcode (see Figure). The demo-hint
does not influence the readability of the barcode in a negative way.

When barcodes are generated in an image, PostScript®, PDF, or PCL® format, an additional
horizontal bar is drawn across the barcode. Like the other demo-hint this bar usually does not
influence the readability of the barcode. Its sole purpose is to indicate that the barcodes were
generated with a demo version of TBarCode.

► In special cases (e.g. very small or high-resolution barcodes) you may want to test the pro-
duct without restrictions. To obtain a temporary license key contact sales@tec-it.com.

► For enabling the full-featured version (without the demo hints) you can obtain a license key
from TEC-IT (https://www.tec-it.com/order/).

► For more information about licensing, please refer to section 9.

http://www.tec-it.com/
mailto:sales@tec-it.com
http://www.tec-it.com/order/

Page 6 of 19

TBarCode Library – Developer Manual

4 Installation

Please refer to the „TBarCode/X User Documentation“ for an in-depth description.

The document is either included with the setup or (always the latest version) available on the TEC-
IT web-site: https://www.tec-it.com ► Download ► TBarCode/X.

http://www.tec-it.com/

Page 7 of 19

TBarCode Library – Developer Manual

5 General

Please keep in mind that TBarCode Library is a software component. It is not an executable by its
own. Read this document and check out the accompanying sample applications to learn how to
embed TBarCode into your own application.

5.1 TBarCode Library

TBarCode Library (LibTBarCode) is included in the TBarCode/X package. Depending on the
operating system TBarCode/X is delivered as tar-ball, RPM or another appropriate installation
package.

Binaries are available for:

 Linux (x86 + IA64)

 FreeBSD (x86)

 AIX (PowerPC)

 HP-UX (PA-RISC 1.1/2.0 + IA64)

 Sun Solaris (x86 + Sparc)

 SCO OpenServer/UnixWare

 And others.

► If there are no binaries available for your operating system please contact TEC-IT
(support@tec-it.com). Most likely TEC-IT is able to compile a suitable binary.

5.1.1 C/C++ Header Files

TBarCode/X is delivered with the required header and library files of LibTBarCode.

Include the file tbarcode.h in your project in order to get full access to the shared LIB functions
within C/C++:

#include <libtbarcode11/tbarcode.h>

The file is usually installed at the following location:

/usr/local/include/libtbarcode11/tbarcode.h

You will have to add the option

-I/usr/local/include

when calling the preprocessor/compiler, to ensure that the preprocessor/compiler finds the header
files.

5.1.2 Linking

TBarCode/X is available as static library or as shared library. A shared library is comparable to a
DLL under Windows. Per default it is installed in /usr/local/lib. You can link against TBarCode/X
using the linker options

-L/usr/local/lib/ -ltbarcode11

The foregoing linker options prefer the usage of the shared library (in /usr/local/lib). If the shared
library was not found the static library will be used.

mailto:support@tec-it.com

Page 8 of 19

TBarCode Library – Developer Manual

5.2 TBarCode Framework (for Mac OS)

The TBarCode Framework is a special version of the TBarCode Library for Mac OS. It is included
in the TBarCode/X installation package for Mac OS.

5.2.1 C/C++ Header Files

The required header files are a substantial ingredient of the TBarCode Framework. Include the file
tbarcode.h in your project in order to get full access to the library functions within C/C++ (the first
TBarCode stands for the name of the framework):

#include <TBarCode/tbarcode.h>

The file (and the other needed include files) is installed in the framework bundle which is usually
located at following path:

/Library/Frameworks/TBarCode.framework

5.2.2 Compiling and Linking

If you want to compile and link your application to the TBarCode Framework, just add it to your
project. A framework is comparable with a DLL under Windows or a shared library under
Linux/UNIX, but it not just only a file, but a full-featured bundle that also contains the public header
files and the documentation. Starting with 11.5.1 the library is linked with a relative path in order to
support App sandboxing.

5.3 LibTBarCode Java Interface

The Java interface is a software layer between the TBarCode Library (LibTBarCode) and the Java
Virtual Machine through Java Native Interface (JNI) technology.

The architecture of this layer is composed by:

 The TBarCode Library in order to execute the bar code generation.

 The JNI library TBarCode11_Java (DLL or shared library), to translate the Java calls to the
LibTBarCode API requests and responses.

 The Java library TBarCode11_Java.jar, to simplify the access to the bar code generator JNI
interface.

It is important that the paths of the TBarCode Library and the JNI library are included in the
java.library.path of the Java Virtual Machine. To make these paths available they can be

 defined in LD_LIBRARY_PATH (Linux and Macintosh), SHLIB (HPUX) or LIBPATH (AIX),

 passed in the parameter -Djava.library.path of the java command or

 defined as system libraries.

The Java library TBarCode11_Java.jar must be included in the classpath of the javac/java
command in order to compile and execute your projects.

► The TBarCode Java Interface is available on request and is built for your specific platform
on demand. Please contact our support for a suitable version for your platform.

Page 9 of 19

TBarCode Library – Developer Manual

6 Using TBarCode

6.1 Important Functions

The basic function calls to produce a barcode are as follows (in the appropriate order).

 BCLicenseMe()
This function licenses TBarCode and removes the demo restrictions. Licensing must be
performed before you draw a barcode (e.g. after TBarCode has been loaded to memory).

 BCAlloc()
This function sets up and initializes the internal barcode structure. You receive a handle that
is used for all other function calls (pBarCode). This function must be called before any other
function expecting a pBarCode parameter.

 BCSetBCType()
Sets the type of the barcode (symbology); e. g. Code39, Code128, UPC, EAN, 2OF5, ...

 BCSetText()
Sets the data to be encoded as barcode.

 BCSetModWidth() (optional)
This function is used if an application requires a specific module width. Without this function
the module width is computed automatically by TBarCode. It adapts to the barcode
dimensions (specified via a bounding rectangle) and the current input data.

 More optional barcode settings
Set the barcode properties according to your application; e.g. BCSet_PDF417_RowHeight(),
BCSetCDMethod(), BCSetBearerBarWidth(), BCSetRatio(), BCSetTextDist(),
BCSetLogFont(), ...

 BCCheck() (optional)
This function checks if the data characters are valid for the selected barcode type. If invalid
data was encountered it returns an error-code. If escape-sequences are used, they are not
translated in this function. It must be called before BCCalcCD().
Note: This function call is optional; BCCreate() calls this function in any case automatically.

 BCCalcCD() (optional)
This function computes the check-digit(s) for the given input data and the selected check-
digit method. The check digits are added to the barcode data automatically. On demand you
can retrieve the check digits with BCGetCheckDigits(). Please consider that symbology
internal check digits (like Modulo 103 of Code-128) are not calculated with this function –
they are always part of the created barcode.
Note: This function call is optional; BCCreate() calls this function in any case automatically.

 BCCreate()
This function prepares the barcode structure (pattern) to be drawn with BCDraw(). It returns
ErrOk if everything is ok. If not, it returns an error code (of type ERRCODE) that specifies
the error in more detail. After BCCreate() all parameters of the resulting barcode are
available (e.g. number of modules, dimensions, check-digits, meta-description).

 Get Dimensions (optional)
After BCCreate() you can call the methods BCGetBarcodeHeight(), BCGetBarcodeWidth(),
...

Page 10 of 19

TBarCode Library – Developer Manual

 BCDraw()
This function draws the barcode into the given device context. The barcode dimensions are
set through passing the coordinates of a bounding rectangle. No special mapping is
performed.
Note: Only available in TBarCode Library for Windows!

 BCPostscriptToFile(), BCPCLToFile()
These function save the barcode in PostScript or PCL output format.

 BCFree()
This function de-initializes the barcode info-structure and frees allocated memory. It must be
called as last function.

► If any of the BCxxxx functions in the above described order returns an error code not equal
to zero then DO NOT call subsequent BCxxxx functions (except of BCFree()). An error code
<> 0 indicates an error condition - subsequent calls (except of BCFree()) may fail and
produce unexpected results.

6.2 Calling Order

► Please note: Starting with TBarCode V8 and higher the following calling order must be
maintained to guarantee the correct conversion of the input data to the target character set:

1. First set all barcode properties (like barcode type, translation of escape sequences, etc.)

2. Then call BCSetBCText()

3. Finally call BCCreate()

6.3 ANSI and UNICODE

Since version 8.x the TBarCode Library for UNIX provides UNICODE functionality. All functions
with parameters or return values of data type string are implemented in 2 ways as ANSI and Wide
String function. The names of ANSI-functions end with ‘A’ whereas the Wide String-functions end
with ‘W’. If you want to work with UNICODE you have to use the W-functions.

As UNICODE characters consist of 2 bytes and most of the barcode types are only able to encode
one byte per character, it is not always clear how the input data should be interpreted. So we
provide 2 ways to control.

 Encoding Mode
The input data can either be converted to a selected code page (see below) or interpreted
byte per byte (lower byte only , lower before upper byte, or the other way round).

 Code Page
The user can choose among several pre-defined code pages (e.g. ANSI, ISO 8559-1 Latin I,
UTF-8, Shift-JIS…) or add a custom code page.

Page 11 of 19

TBarCode Library – Developer Manual

7 C/C++ Sample Code

Below are the steps to create a barcode image in C/C++ (only for demonstrative purposes, not all
variables declared).

► Also check out the fully functional samples provided with the setup – or available as
separate download.

Include the header file:

#include <libtbarcode11/tbarcode.h>

Sample code for barcode generation (excerpt):

// Initialize library

BCInitLibrary("/usr/local/share/tbarcode11");

// License the product

BCLicenseMe("LicenseeName", eLicKindDeveloper, 1, "MyKey", eLicProd2D);

// Allocate memory and retrieve barcode handle (pointer)

t_BarCode* pBC;

BCAlloc(&pBC);

// (Optional:) Set font type and height for the human readable text

BCSetFontName(pBC, "Helvetica");

BCSetFontHeight(pBC, 10); // 10 points

// Adjust symbology

BCSetBCType(pBC, eBC_Code128);

// Set barcode data

char* demo = "12345678";

BCSetText(pBC, demo, strlen(demo));

// Create barcode pattern (bars, spaces)

BCCreate(pBC);

// Set barcode size (PostScript bounding rectangle)

// Units are [0.001 mm]

rect.left = 0; // 0 mm

rect.bottom = 0; // 0 mm

rect.right = 50000; // 50 mm

rect.top = 30000; // 30 mm

// Draw to device context

// not supported in Linux/UNIX, because only the Windows GDI uses a "device context"

// Save to Postscript file

BCPostscriptToFile(pBCode, (void *) "barcode.eps", &rect);

// Save barcode image to buffer

// Unit is [0.001mm] for Postscript and PCL

void* pPSBuffer = malloc(0xffff);

BCPostscriptToMemory(pBC, pPSBuffer, 0xffff, &rect);

if (pPSBuffer)

 free(pPSBuffer); // Release allocated memory after use

// Release memory for barcode structure

BCFree(pBC);

// Clean up

BCDeInitLibrary();

Page 12 of 19

TBarCode Library – Developer Manual

8 Custom Drawing Functions for Special Devices

8.1 Why Custom Drawing Functions?

TBarCode Library offers the possibility to implement custom drawing functions. This is useful
whenever you control a device which is not supported by any standard-driver functionality. Good
examples are laser marking devices, printer firmware (in combination with source code license),
OS-400 specific printers and others.

Custom drawing functions can be registered as so called call-back functions. When drawing a
barcode the TBarCode Library will call the custom drawing functions instead of using the internal
drawing routines.

► IMPORTANT: Custom drawing functions will only work if a valid TBarCode license is
provided! Temporary license keys are available on request – please contact support@tec-
it.com. Section 8.1, “Error! Not a valid bookmark self-reference.”, describes how to apply
a license.

8.2 The General Concept

TBarCode computes a barcode using a so-called meta-description. This meta-description defines
in a complete device independent way where bars and where spaces are to be drawn.

Such a meta-description consists of upper- and lowercase letters:

 Uppercase letters are placeholders for bars (or dots)

 Lowercase letters are placeholders for spaces

 The letter itself (A or B or C or …) defines the width of the bar (space) to be drawn.

8.3 Linear Barcodes & PDF417

For barcodes, which are using multiple widths for the bars (or spaces), multiple uppercase (or
lowercase) letters are passed to the call-back function:

Uppercase letters = bars:

 A ... bar (actual width = 1 * module width X)

 B ... bar (actual width = 2 * module width X)

 C ... bar (actual width = 3 * module width X)

 D ... bar (actual width = 4 * module width X)

 E ... and so on

The factors for the module width depend on the current print-ratio. In this example the print-ratio for
the bars is 1:2:3:4

Lowercase letters = spaces:

 a ... space (actual width = 1 * module width X)

 b ... space (actual width = 2 * module width X)

 c ... space (actual width = 3 * module width X)

 d ... space (actual width = 4 * module width X)

 e ... and so on

mailto:support@tec-it.com
mailto:support@tec-it.com

Page 13 of 19

TBarCode Library – Developer Manual

The factor for the module widths depend on the current print-ratio. In this example the print-ratio for
the bars is 1:2:3:4

X represents the module width. All actual widths of bars or spaces are usually multiples of the
module width.

Each barcode symbology uses a pre-defined print-ratio (and this ratio can be adjusted by the user).
For example Code39 uses the following print-ratio: 1:3:1:3

 A ... 1 X

 B ... 3 X

 a ... 1 X

 b ... 3 X

It is possible to query the used print-ratio for a specific barcode symbology – please check out the
relevant functions BCGetRatioString, BCGetRatioHint, BCGetCountBars, and BCGetCountSpaces.

8.4 2D Matrix Codes (Data Matrix, QR-Code, Aztec Code, etc.)

2D matrix codes like Data Matrix, QR-Code, and Aztec Code consist of several rows. The
corresponding row patterns are transmitted to a user-defined callback function separately row by
row. The callback function is responsible for drawing a single barcode row.

The row pattern consists of uppercase and lowercase letters. Uppercase letters serve as
placeholders for black bars (or squares) – lowercase letters are placeholders for spaces (white
squares):

 Uppercase “A” - black dot/bar, Lowercase “a” - white dot/space

Figure 1: Custom Barcode Drawing

The example above shows Data Matrix, but QR-Code and Aztec Code work in the same manner.

8.4.1 About Drawing

The pattern itself contains no absolute sizes. The matrix dots (A and a) have the same width and
height X. This is called the module width. By adjusting the module width to the size of the device
dots (pixels) you can minimize the printing tolerances.

8.5 Postal Codes with Bars of Different Height

In contradiction to other linear barcodes many postal codes don’t use multiple widths for the bars
but multiple heights. Instead of letters, digits are passed to the call-back function.

Page 14 of 19

TBarCode Library – Developer Manual

A single digit is a placeholder for a sequence of one bar and one space. All bars and spaces have
the same width of 1X (=module width). The heights of the bars differ.

Depending on the barcode type the pattern string may contain two, three, or four different digits
(=heights).

8.5.1 Barcode with 2 different heights

Barcodes with 2 different heights consist of long bars and short bars, both sharing the same base
line, growing bottom up.

 1 ... long bar

 2 ... short bar

Figure 2: US Postal Code with 2 different heights

8.5.2 Barcodes with 3 different heights

Barcodes with 3 different heights consist of long bars and short bars either growing bottom up or to
down, and short bars.

 0 ... long bar

 1 ... short bar, growing top down

 2 ... short bar, growing bottom up

Figure 3: Pharmacy Code Two-Track with 3 different heights

8.5.3 Barcodes with 4 different heights

Barcodes with 4 different heights consist of long bars, medium sized bars either growing bottom up
or to down, and short bars, drawn vertically centered.

 0 ... long bar (Full)

 1 ... medium sized bar, growing top down (Ascender)

 2 ... medium sized bar, growing bottom up (Descender)

 3 ... short bar (Tracker)

Figure 4: Australian Postal Code with 4 different heights

8.5.4 About Drawing

The pattern itself contains no absolute sizes. Following table gives you detailed hints how to convert
a given pattern to a valid barcode.

 .

 .

.

Page 15 of 19

TBarCode Library – Developer Manual

Size and position of a bar is defined by the bar’s height (in percent of a full height bar) and the bar’s
distance from the upper edge (also in percent of a full height bar).

Barcode Type(s) Pattern Digit

0 1 2 3

US Postal,
CEPNet,
Planet

Height: 100%

Distance: 0%

Height: 38.5%

Distance: 61.5%

-- --

Pharmacode 2-Track Height: 100%

Distance: 0%

Height: 50%

Distance: 50%

Height: 50%

Distance: 0%

--

Australian Postal Height: 100%

Distance: 0%

Height: 62%

Distance: 0%

Height: 62%

Distance: 38%

Height: 24%

Distance: 38%

Royal Mail 4 State,

KIX

Height: 100%

Distance: 0%

Height: 62,5%

Distance: 0%

Height: 62,5%

Distance: 37,5%

Height: 25%

Distance: 37,5%

Intelligent Mail®
Barcode,

DAFT,

Japanese Postal

Height: 100%

Distance: 0%

Height: 66,7%

Distance: 0%

Height: 66,7%

Distance: 33,3%

Height: 33,3%

Distance: 33,3%

Table 1: Drawing Barcodes with Multiple Heights

8.6 Control Patterns

Apart from letters and digits the pattern string may contain control characters. In the following you
find a short overview.

8.6.1 Protruding Bars for EAN and UPC Codes

Following patterns specify changes of the bar length

 ASCII (254) ... Begin of section with long (=protruding) bars

 ASCII (255) ... End of section with long (=protruding) bars

 ASCII (253) ... Begin of an add-on section which last until the end of the code

The barcode types EAN 8/13 and UPC A/E contain protruding bars on the begin, in the middle, and
on the end of the barcode. With ASCII (254) the section with protruding bars starts, after ASCII
(255) it ends. Bars of “normal” length follow. Protruding bars are extended on the bottom side by
about the half height of the human readable text.

Add-on sections start with ASCII (253). They continue until the end of the code. Add-on bars leave
space for the text above the barcode and align at the bottom with the protruding bars.

Figure 5: EAN8 with 5 add-on digits

Page 16 of 19

TBarCode Library – Developer Manual

8.6.2 Increment and Decrement the Bar Width for EAN and UPC Codes

 ASCII (252) ... Begin bar width increment

 ASCII (251) ... End bar width increment

 ASCII (250) ... Begin bar width decrement

 ASCII (249) ... End bar width decrement

Based on the definition of EAN and UPC codes the width of some bars has to be increased
whereas the width of other bars has to be decreased. This is done by the control patterns shown
above.

The amount of bar width increment/decrement is 1/13 of the actual module width. If a bar becomes
wider, the following space becomes narrower and vice versa.

Please examine the EAN specification for a detailed description.

Page 17 of 19

TBarCode Library – Developer Manual

9 How to License TBarCode

In order to enable the full-featured version, you need a valid license key from TEC-IT. A description
of the available license-types as well as all necessary information for ordering can be found at
https://www.tec-it.com/prices.

If you don't know the license type according to your application, please ask our sales team
(sales@tec-it.com).

For placing an online order check out https://www.tec-it.com/order/.

► For testing the call-back API or other evaluation purposes you can request a time-limited
license key from support@tec-it.com.

9.1 Demo Limitations

Whenever TBarCode is not licensed with a valid license key, an additional text “Demo” or an
additional horizontal bar is drawn across the barcode. In addition all custom drawing call-back
functions are disabled.

To remove the demo limitations call BCLicenseMe() with valid a license key.

Here is an example for programmatic licensing:

ERRCODE eCode = BCLicenseMe("John Smith", eLicKindSite, 1,

 "01234567890ABCDEFGHIJKLMNOPQRSTU", eLicProd2D);

In Windows: BCLicenseMe() should be called as the first function of TBarCode Library.

In UNIX: BCLicenseMe() should be called directly after BCInitLibrary().

Figure 6: Barcodes rendered without valid license

Figure 7: Barcodes rendered with valid license

http://www.tec-it.com/prices
mailto:sales@tec-it.com
http://www.tec-it.com/order/
mailto:support@tec-it.com

Page 18 of 19

TBarCode Library – Developer Manual

10 Redistributing TBarCode

This chapter explains what is important when redistributing a custom application that uses the
TBarCode Library.

► Please note that in most cases you need a developer license for re-distribution of TBarCode
Library (except for in-house applications which are bound to one or more sites).

As a developer you can choose whether you link TBarCode as static library or as shared object.

10.1 TBarCode as a Static Library

The static library can be found at the following location:

/usr/local/lib/libtbarcode11.a

When you link against the static library, then you do not have to redistribute anything else, except
your own application.

10.2 TBarCode as a Shared Library

The shared library consists of the following files:

/usr/local/lib/libtbarcode11.so

/usr/local/lib/libtbarcode11.so.0

/usr/local/lib/libtbarcode11.so.0.0.0

libtbarcode11.so and libtbarcode11.so.0 are symbolic links to libtbarcode11.so.0.0.0. The version
numbers might be different on your system – depending on the type of operating system and the
actual version of TBarCode. You can find the right files by running

ls –l /usr/local/lib/libtbarcode11.so*

When you link you application against the shared library, then you will have to redistribute these
files (including the symbolic links) with your application.

10.3 TBarCode as a Framework (Mac OS)

The framework can be found at the following location:

/Library/Frameworks/TBarCode.framework

When you link against the framework, then you will have to redistribute the framework directory.
Just copy it to the location shown above.

Starting with TBarCode/X Version 11.5.1 the dynamic library is linked with a relative path. You can
distribute the library as part of your App container structure (sandboxing). Redistributing the
framework directory as shown above is obsolete.

Page 19 of 19

TBarCode Library – Developer Manual

11 Contact and Support Information

TEC-IT Datenverarbeitung GmbH

Address: Hans-Wagner-Str. 6

AT-4400 Steyr

Austria/Europe

Phone: +43 / (0)7252 / 72 72 0

Fax: +43 / (0)7252 / 72 72 0 – 77

Email: office@tec-it.com

Web: https://www.tec-it.com

AIX® is a registered trademark of IBM Corporation.
HTML, DHTML, XML, XHTML are trademarks or registered trademarks of W3C, World Wide Web Consortium, Laboratory for Computer
Science NE43-358, Massachusetts Institute of Technology, 545 Technology Square, Cambridge, MA 02139.
JAVA® is a registered trademark of Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, CA 94303 USA.
JAVASCRIPT® is a registered trademark of Sun Microsystems, Inc., used under license for technology invented and implemented by
Netscape.
Linux® is a registered trademark of Linus Torvalds in several countries.
Microsoft®, Windows®, Microsoft Word®, Microsoft Excel® are registered trademarks of Microsoft Corporation.
Navision is a registered trademark of Microsoft Business Solutions ApS in the United States and/or other countries.
Oracle® is a registered trademark of Oracle Corporation.
PCL® is a registered trademark of the Hewlett-Packard Company.
PostScript® is a registered trademark of Adobe Systems Inc.
SAP, SAP Logo, R/2, R/3, ABAP, and SAPscript are trademarks or registered trademarks of SAP AG in Germany (and in several other
countries).
UNIX® is a registered trademark of The Open Group

All other products mentioned are trademarks or registered trademarks of their respective companies. If any trademark on our web site or in this
document is not marked as trademark (or registered trademark), we ask you to send us a short message (office@tec-it.com).

mailto:office@tec-it.com
http://www.tec-it.com/
mailto:office@tec-it.com

