
TEC-IT Datenverarbeitung GmbH Seite: 1
www.tec-it.com

Datenverarbeitung GmbH

Wagnerstr. 6
A-4400 Steyr

AUSTRIA/EUROPE

e: office@tec-it.com
w: www.tec-it.com

p: +43 / (0) 7252 / 72 720
f: +43 / (0) 7252 / 72 720 - 77

TBARCODE 5.0
ACTIVEX

Documentation

Last Update: 06-Aug-2004

mailto:office@tec-it.com
http://www.tec-it.com/

TEC-IT Datenverarbeitung GmbH Seite: 2
www.tec-it.com

Content
1 GENERAL.. 5
1.1 About TBarCode ActiveX ... 5

1.1.1 Why you should use TBarCode ActiveX:...5
1.1.2 Difference Registration / Licensing..5
1.1.3 OPT – Optimized Pixel Technology...5
1.1.4 Limitation of the demo version...5

1.2 Download and Setup .. 6
1.3 Support .. 6

2 LICENSING.. 7
2.1 License procedure.. 7

2.1.1 Manual input ..7
2.1.2 Licensing via program code (Developer) ...7
2.1.3 Samples...7

3 PROPERTY PAGES ACTIVEX ... 8
3.1.1 Invoking ...8
3.1.2 General ..8
3.1.3 Advanced...9
3.1.4 PDF417..11
3.1.5 MaxiCode...13
3.1.6 Data Matrix ..14
3.1.7 QR Code..15
3.1.8 Codablock F...17
3.1.9 Font..18
3.1.10 Color ..19

4 PROGRAM INTERFACE (API) ACTIVEX... 20
4.1 General... 20

4.1.1 Prog ID, Class ID ...20
4.2 Properties .. 20

4.2.1 General (for 1D and 2D types of bar codes)..20
4.2.2 PDF417 Properties ..24
4.2.3 MaxiCode Properties ...25
4.2.4 Data Matrix Properties ...26
4.2.5 QR Code Properties ..26
4.2.6 Codablock F Properties ...27
4.2.7 Barcode Properties within Event-Handlers ..28

4.3 Methods ... 28
4.3.1 Methods for Standard Applications..28

TEC-IT Datenverarbeitung GmbH Seite: 3
www.tec-it.com

4.3.2 Methods for Web Applications ...30
4.3.3 Error Handling..31

4.4 Events .. 31

5 PROGRAM INTERFACE (API) DLL.. 32
5.1 General... 32

5.1.1 Basic Sequence...32
5.2 Function Reference .. 33

5.2.1 Init- / Deinit Functions ..33
5.2.2 Set / Get Functions (Properties) ..33
RSS Properties...38
5.2.3 Set / Get Functions for PDF417...38
5.2.4 Set / Get Functions for MaxiCode..39
5.2.5 Set / Get Functions for Data Matrix ...40
5.2.6 Set / Get Functions for QR Code...41
5.2.7 Set / Get Functions for Codablock F..43
5.2.8 Methods (Drawing, Licensing…)..44
5.2.9 Callback functions for user-defined drawing routines..47

6 APPENDIX ... 49
6.1 Bar Code Reference ... 49

6.1.1 Enumeration and Default Settings ...49
6.1.2 Related Bar Code Symbologies...53

6.2 Parameter .. 53
6.2.1 Check Digit Enumeration ...53
6.2.2 Ratio, RatioHint (Ratio Format) ...54
6.2.3 Format ...55
6.2.4 ESC Sequences and Control Characters ..56
6.2.5 Application Identifier ..58

6.3 MaxiCode... 59
6.3.1 Extended Documentation ..59
6.3.2 Setting SCM parameters ...59

6.4 Japanese Postal (Customer) Code ... 59
A) Direct Encoding Mode ...59
B) Japanese Extraction Mode ..59

6.5 Korean Postal Authority Code... 60
6.6 Error Codes ... 61
6.7 Image Types .. 61

6.7.1 Image Data Format..61
6.7.2 Compression Modes..62
6.7.3 Resolution and Readability ..62

7 FAQ’S... 65

TEC-IT Datenverarbeitung GmbH Seite: 4
www.tec-it.com

7.1.1 How to add the leading and trailing ‘*’ for Code 39? ...65
7.1.2 How to add the check digit to Code 39?..65
7.1.3 How can I add bar codes to a mail merge document? ..65
7.1.4 How can I determine the number of PDF417 Code Words? ...66
7.1.5 How to add the leading and trailing ‘A’ (or B or C or D) for CODABAR?...66
7.1.6 How can I change the module width to 15 mils in my web application (ASP) ? ..66
7.1.7 How to use a specific subset in Code 128?...67
7.1.8 How to use the compressed mode of Code 128? ...67
7.1.9 How can I get a PDF417 symbol with standard aspect ratio (3:2) ?..68
7.1.10 How to license the product from within my application?..68
7.1.11 How to use Application Identifiers (AI’s) in Code 128 or EAN128? ...68
7.1.12 How can I set the Module Width to a constant value?...69
7.1.13 I am changing the font resolution (large fonts, 120dpi) and get a clipped off bar code with SaveImage?70
7.1.14 I am using PrintForm in VB and the barcode is not readable ..70
7.1.15 What is the maximum data capacity of PDF417?..71
7.1.16 When using ESC-Sequences they are not encoded (and the scanners signals an error) - why?...71
7.1.17 How can I save the MaxiCode symbol with a higher image resolution?..72
7.1.18 How to draw bar code to image or to printer device context ...72
7.1.19 I always get an error when calling SaveImage method? ...73
7.1.20 When using SaveImage, my barcode reader can’t scan the symbol / image!...73
7.1.21 How can I use TBarCode within FoxPro?..74
7.1.22 How to speed up the generation and printing of QR–CODE for large numbers?...75
7.1.23 What can I do to optimize PDF417 for sending through a desktop analogue FAX? ...75

TEC-IT Datenverarbeitung GmbH Seite: 5
www.tec-it.com

1 General

1.1 About TBarCode ActiveX
Thank you for choosing our product. TBarCode ActiveX is a tool for generating and printing bar codes
directly from within your application.
You can download the latest version from http://www.tec-it.com/download
Beside the ActiveX Control we provide also bar code libraries for programmers:

- TBarCode DLL 32-Bit DLL for the Win32-API)
- LibTBarCode Linux/Unix library for C/C++ developers

Using TBarCode implies that you are accepting our license terms - therefore we recommend you to read
them at first!

1.1.1 Why you should use TBarCode ActiveX:
• You don’t need programming knowledge - ActiveX Controls can simply be used with Insert Object

and right-clicking the object to modify the properties.

• You can still program the control if your application needs programming (e.g. within VB, Office…).

• You can create bar codes in the highest possible output resolution and quality (OPT technology).

• You can automate check digit calculation and adjust all bar code specific parameters: module width,
bar width ratio, text distance and much more…

• You can use TBarCode ActiveX within web applications running either on the server or at client side.
Using TBarCode within Active Server Pages (IIS) and PHP (Windows) is fully supported.

• You have more than 55 different bar code symbologies within one product and one price.

• Our bar code specialists will help you and our tech support is free.

1.1.2 Difference Registration / Licensing
The ActiveX Control must be registered in the Windows OS as OLE Control correctly. This registration is
executed automatically with the installation program (setup). On demand you can manually register the OCX
file with the command line tool “regsvr32.exe”.

Registration is not the same as licensing. The registration process announces ActiveX Controls to the
Windows Environment so that other programs can use the Control. But you can use (evaluate) the product
without licensing (although in the demo mode with restrictions).

1.1.3 OPT – Optimized Pixel Technology
As novelty TEC-IT introduced “OPT” (Optimized Pixel Technology) with its TBarCode products starting from
the version 2.0 - a special calculation method of the output graphic, which uses the resolution of the
available printer in the best possible way. That is particularly important if high data densities occur (with small
bar code dimensions) or the available printing device has only low output resolution.
If you have to cope with low resolution you can use the new Property “OptResolution” – available in Version
5. It optimizes the module width and ensures that the output quality corresponds to the highest possible
results of printing and your scanner can read the bar code.

1.1.4 Limitation of the demo version
In the demo version the bar code will be drawn with an additional horizontal bar. In order to enable the full-
featured version (without horizontal bars), you need a license key from TEC-IT.
After you have got your license key you can switch the downloaded eval version to a licensed version
without limitations.

http://www.tec-it.com/download

TEC-IT Datenverarbeitung GmbH Seite: 6
www.tec-it.com

1.2 Download and Setup
First you download the product from our homepage: http://www.tec-it.com/Download (Software - > TBarCode
ActiveX.
After the download you execute the self-extracting installer to start the setup of the product. Please
acknowledge the license conditions! The program files will be installed into the directory: C:\Program
Files\TEC IT\TBarCode5 per default, if you don’t indicate your own path.
After the installation process the TBarCode ActiveX object can be inserted into the desired application.

1.3 Support
If you have troubles our free support is available via

• Email: mailto:support@tec-it.com

• Online Form: http://www.tec-it.com/support/

• FAX: [+43] (0)7252 / 72720-77.

http://www.tec-it.com/Download
mailto:support@tec-it.com
http://www.tec-it.com/support/

TEC-IT Datenverarbeitung GmbH Seite: 7
www.tec-it.com

2 Licensing
Our License Terms are included at the end of this documentation. The latest pricing and the ability of
online ordering are available at our Website: http://www.tec-it.com/order/.
A description of the available types of license as well as all necessary information for ordering can be
found in the FAQ area of our web page: http://www.tec-it.com/FAQ.
If you don’t know the license type according to your application, please ask for our support:
mailto:support@tec-it.com.

2.1 License procedure
Licensing must take place at least once for each system (or installation). It is however no problem to license
the product several times - e.g. with each program start in the own code. This way of licensing is
recommended.

2.1.1 Manual input
The license data can be entered in the license dialog. Please input the license data exactly as received into
the license dialog of the TBarCode ActiveX Control. Blanks and upper/lower case are considered. To avoid
errors you can use "cut & paste" (if license data is present as email). This process must take place on each
target computer.
The license dialog of the product can be opened as follows:

- right-click on the inserted TBarCode object
- select the menu entry [TBarCode5-Object] - [License].

2.1.2 Licensing via program code (Developer)
The recommended method for developers: Call the method (or function) LicenseMe () from within your
application, before bar codes are printed. When calling this function the ActiveX already should be present
as an instance, otherwise an error message will be received.
A sample for licensing the ActiveX Control in Visual Basic (or VBA or VBScript) can be found in the FAQ
section!

2.1.3 Samples
For easiest beginning and use: For all common software products we support you with sample applications
including the source code.
Download them from the TEC-IT homepage http://www.tec-it.com/Download
Note: Precondition for the samples is the installed ActiveX Control!

http://www.tec-it.com/order/
http://www.tec-it.com/FAQ
mailto:support@tec-it.com
http://www.tec-it.com/Download

3 Property Pages ActiveX

3.1.1 Invoking
In most Windows applications the content and the appearance of the ActiveX Control can be changed with a
right mouse-click on it. After right clicking, the appearing menu [TBarCode5-Object] - [Properties] offers
access to the characteristics of the object by its own dialog window (so called "Property Pages").
The Property Pages are described in the following sections.

In Microsoft Office you can use the menu option "Properties" too - in this window you can change all the
characteristics of the control in a list of “property: value” pairs. Special properties - in particular "data binding”
or “OptResolution” - can be set up only in this dialog (and not in the "Property Pages" of TBarCode itself).

3.1.2 General
This page contains the adjustments that are absolutely needed for the basic functionality. All other
parameters are preset to usual values. For most applications you only have to change settings within this
page.
It contains the following general properties:

Property Page “General”:

Bar code type (Symbology)
Indicates the bar code type you want to generate. The chosen symbology depends on your needs and
influences the type of data that can be encoded and how the printed result looks like. Not all bar code types
are able to represent alphanumeric data; some can only represent digits (or additionally represent limited
special characters like “/” or “*”).
Select the type of bar code according to your application: common types are the UPC (USA), EAN (Europe),
Code 128, Code 39, 2 of 5 Interleaved and PDF417.
For the list of implemented bar code symbologies check out the Bar Code Reference.

Orientation
Defines the orientation of the bar code. If another value is selected (90°, 180°, 270°), the bar code is rotated
clockwise.
Note: Some character fonts do not support rotation (e. g. some bitmap fonts – choose a True type Font
instead).

TEC-IT Datenverarbeitung GmbH Seite: 8
www.tec-it.com

Encoded Data
Enter the data, which should be represented as bar code (letters, digits and special characters). The graphic
result depends on the selected bar code type. If the encoded data is invalid for the selected symbology, an
"X" is displayed together with an error code and a short description instead of the bar code.

Back style
Indicates the mode used for drawing the background. The bar code can be painted in a transparent (- >
standard, background shines through) or opaque way (background is overwritten with the background color).

Print text
Indicates if the content of the barcode is printed as “human readable text” in a separate line (below or
above). Default: Yes

Above symbol
Indicates where the “human readable text” should be printed. Selectable values: below or above the bar
code (- > standard: below). For some bar codes, like UPC and EAN, the adjustment “Above symbol” is not
permitted.

Text distance
Distance between the “human readable text” and the bar code (in 1/1000 mm). If "default" is marked, a
default value is used.

License Information
Contains information about the licensee and the license type entered in the license dialog.

Button “About...”
Opens the „About Dialog“ with version and copyright info.

Button „License...“
Opens the License-Dialog. For more information refer to chapter License procedure.

3.1.3 Advanced
The following advanced bar code properties can be set:

Property Page “Advanced”

Please take care when
modifying these properties;
some values may result in
unreadable bar codes. Always
make a test scan in case of
doubt!

TEC-IT Datenverarbeitung GmbH Seite: 9
www.tec-it.com

TEC-IT Datenverarbeitung GmbH Seite: 10
www.tec-it.com

Module width [1/1000 mm]
Indicates the width of a module in 1/1000 mm – this parameter is also known as “Narrow Bar Width”.
Each bar code element is divided into individual "modules". One module is the smallest unit of the graphical
bar or space segments. The module width functions as fundamental unit, i.e. all lines and spaces are based
on this adjustment.
If "default" is marked, the module width is calculated automatically based on the width of the bounding
rectangle (set by changing the size of the ActiveX object) and the number of utilizable data characters to be
encoded.
By adjusting the module width to a constant value the bar code becomes wider if more data is encoded. The
bounding rectangle must be drawn or programmed at least as wide, as necessary for the full and not
truncated representation of the largest amount of utilizable data.

A constant module width is recommended if you have varying quantities of data but the optical data density
should be constant. Also some label specifications require a constant module width.

When using the default setting: If the module width is computed automatically, the optical data density of the
print out increases with higher amounts of encoded data characters. Depending upon the printer resolution,
the lower limit for the module width may be exceeded – leading to unreadable bar codes. Ensure to make
the bar code bounding rectangle as wide as necessary for the largest data content.
Please contact our support in case of questions about the module width.

Print ratio
The Print Ratio is the relationship between the bar- and gap-widths of a bar code. Another word for the print
ratio is “Bar Width Ratio” or “Bar/Space Width Ratio”.
The print ratio must be entered in a special format. The ratio format (evident in the property RatioHint)
depends on the selected type of bar code and on how many different bar- and gap-widths are used.
The resulting width of a single bar (or gap) is calculated using the indicated Print Ratio and the (calculated or
specified) module width.

This property should be used in special applications only.

Example: If a bar code element has 4 different bar widths and 4 different space widths, then the print ratio
looks like this (Code 128): 1:2:3:4:1:2:3:4. In the first part ("1:2:3:4") the width ratio of the bars is set, in the
second section the relation of the spaces are set (in our case, they are the same). The smallest bar is "1"
wide, the next larger is "2" (thus twice as wide as the smaller bar) and so on. Modifications within this area
are meaningful only for special applications, since some bar codes may become unreadable when
manipulating the print ratio.
Refer to Bar Code Reference / Enumerations for the print ratios (and RatioHint information) according to
each bar code type. Also look at Ratio, RatioHint (Ratio Format) for more information.

Format/subset
This is an image for formatting the utilizable data of the bar code. The format string operates with substitute
symbols to indicate how the data is structured. It is also possible to insert constant characters mixed with the
bar code data according to defined rules. Also certain control characters that make it possible to change the
Subsets for Code 128, EAN 128 and UCC 128 (or to define the desired start/stop character of CODABAR)
are defined.
The detailed description of the format string can be found in the References (Format).

Guard width [1/1000 mm]
The Guard bar is a horizontal line, which limits the bar code on the upper and lower side. If the value is not
set to zero (standard), the Guard bar is printed. Values larger than zero indicate the width of the Guard bar in
1/1000 mm. For some types (like UPC and EAN) the value must be zero.

Notch height [1/1000 mm]
Sets the protruding of the synchronization bars from the bar code (e.g. the double lines within EAN on the
left, centrically and on the right side)

TEC-IT Datenverarbeitung GmbH Seite: 11
www.tec-it.com

Check digit
The calculation method of the check digit can be set here. Whether you need a check digit depends on your
application and on the selected bar code symbology. TBarCode calculates check digits automatically.
Why check digits? In order to guarantee that the bar code data is read properly, a check digit is intended at
the end of the utilizable data. A comparison of the bar code content with the check digit informs the scanning
device about incorrect scans and forces the device to repeat (or reject) the scan. The check digit calculation
method is standardized for certain common bar codes.
With the default-adjustment the check digit is calculated according to the specification of the selected bar
code type. Not all bar codes have a must check digit, it also can be optional.

Modifications within this area are admissible only for special applications or for bar codes with selectable
check digit methods. This field is also used to enable check digit calculation, if none is set as standard (a
check digit is not standard, but recommended for LOGMARS or Code39).

Automatic “check digit override":
You can do a “check digit override” – which means the check digit is already supplied in the bar code data
and therefore no automatic check digit calculation is performed by TBarCode.
Automatic “check digit override” happens if the selected bar code has a predefined number of utilizable data
characters and has a preset check digit place and your data source contains already the whole data
including the check digit.
Example: For encoding data within the EAN-13 symbology you have 13 digits from your data source. EAN
13 permits encoding of 12 utilizable digits + 1 check digit at the end the internal calculated check digit of
TBarCode will be replaced by the external supplied check digit in your input data.

Please keep in mind that in this case our tool does not check the correctness of the check digit supplied by
your application.

Check digit “override” was primarily designed for use with article databases, where the article numbers
already include the check digit. This method can also be used to calculate and provide own check digits
(usually by program code) or to use all possible digits for utilizable data (in non standard applications).
Under normal circumstances you should not use this feature – we recommend calculation of the check
digit(s) by TBarCode.

Translate escape sequences
Indicates whether Escape Sequences (like \n) are to be translated (Default: no).
The use of escape sequences is useful if you need to encode control characters such as Carriage Return or
FNC1 into the bar code. Also together with 2D symbologies if you want to encode binary data you should
use Escape Sequences.
For a detailed list see Reference Esc-Sequences.

Symbol must fit into rectangle
If the option “Symbol must fit into rectangle” is marked, an error code will be shown in place of the bar code,
if the produced bar code does not fit into the bounding rectangle. This occurs if the module width property is
preset to a constant value (by the user) and the total width of the bar code exceeds the bounding rectangle.
Truncated bar codes can be avoided this way and incorrect printouts can be detected immediately. This
option is recommendable in connection with manual adjustments of the module width.

Suppress error message
If the bar code data contain invalid values (characters which can not be encoded with the selected bar code
type e.g. letters like “A” when using 2OF5 Interleaved), then an error message is displayed in place of the
bar code. This error output can be suppressed by checking this box -leading to blank fields when an error
has occurred.

3.1.4 PDF417
The PDF417 - Page is used to modify the standard behavior of the two-dimensional PDF417 bar code.
PDF417 divides data contents into graphical rows and columns. It is a so-called “stacked symbology” with
error correction capabilities. This page is not relevant for other symbologies.

Property Page “PDF417”:

Note: Caution when modifying
these adjustments. Always
make a test scan in case of
doubt!

Rows [3..90]
Indicates the number of graphical rows used for encoding. The value must be between 3 and 90.
Default: the number of lines (rows) is calculated automatically depending on the encoded data.

Columns [1..30]
Defines the number of graphical columns in the symbol. The value must be between 1 and 30. Start-, stop-
and line-indicator columns are not taken into account.
Default: the number of columns is calculated automatically depending on the number of input characters.

You should not set both rows AND columns to a constant value (fix only one of these two parameters).

Row height [1/1000 mm]
Sets the height of an individual row in 1/1000 mm. Default: the row height is calculated automatically
depending on the bounding rectangle and the number of rows.
Some label specifications require a specific ratio between module width and row height (e.g. for 1:3 set the
module width to 254 and the row height to 762).

Error correction level
Defines the error correction level. The value can be between 0 and 8.
0 … error recognition only (no correction possible)
8 … error correction (highest level).
Default: the level is calculated depending on the input data and is set in a range between 2 to 5.
A higher level adds more information to the symbol, which will need more space for printing. If the symbol is
distorted through surface damage, bad printing quality or smut the error correction information can help to
reconstruct the full information contained in the PDF symbol (reconstruction is done by the scanner).

Macro PDF417
Macro PDF417 is used for connecting multiple PDF417 symbols into one data chain. You can specify the
segment index of the actual symbol, the File-ID that specifies all symbols of one chain and if the current
symbol is the last in the chain.
Use the advanced settings button to enter all parameters for Macro PDF:

TEC-IT Datenverarbeitung GmbH Seite: 12
www.tec-it.com

Error correction
Each PDF417 bar code contains at least 2 code words for error recognition. The error correction level
indicates, how many code words are contained in the bar code for error correction. Level 0: 2 code words,
level 1 - > 4 code words, level 2 - contains > of 8 code words, etc. (16, 32, 64, 128, 256...) up to level 8 with
512 code words. The used Reed Solomon procedure has the following limit for a successful reconstruction of
the data: Formula: ([total of the number of not-decodable characters] + 2 * [number of read errors]) must be
smaller than ([number of error correcting code words] - 2).

3.1.5 MaxiCode
MaxiCode represents data by drawing hexagonal items, which are arranged around a circular center. The
internal data structure is regulated by different "modes". The mode "Structured Carrier Message" was
defined by the parcel transport service UPS®. Data can be encoded with two different error correction levels
(SEC = Standard Error Correction and EEC = Enhanced E.C.).
MaxiCode was designed very flexible. With Structured Append you can divide larger quantities of data into
several MaxiCode symbols – they are joined by the scanner. The maximum data capacity of one symbol is
93 characters. The actual quantity of the utilizable data depends on the selected mode, number of special
characters, whether numeric sequences (which can be compressed) are used and error correction level.

Screenshot Property Page
“MaxiCode”:

TEC-IT Datenverarbeitung GmbH Seite: 13
www.tec-it.com

Mode
Selects the mode of the actual symbol. Default: Mode 4
Mode 2: SCM Numeric Structured Carrier Message with 9 digits Postal Code (digits only)
Mode 3: SCM Alphanumeric Structured Carrier Message with up to 6 characters Postal Code

(alphanumeric characters)
Mode 4 No SCM, encoding of numeric and alphanumeric characters (incl. Standard Error Correction).
Mode 5: Full EEC – like mode 4 but with maximum error correction (safer, but fewer data possible).

Undercut [0..100]
The undercut influences the diameter of the hexagonal bar code elements. In new applications it is
recommended (according to the AIM standard) to use an undercut setting of 75% (the default).

Preamble Options
Used in particular “Open System Standards”. Under Preamble Date the last two digits of a year can be
entered. They are inserted automatically into the data stream in a predefined place.

Structured Append
If you want to “connect” several MaxiCode symbols in order to encode larger quantities of data, then you can
use “Structured Append". A symbol identification number - which is entered in the “index” field - can be
assigned to each MaxiCode symbol. Its value can range between 1 and 8. This index indicates the order, in
which the data is joined after the reading/scanning process. The total number of arranged MaxiCode
symbols must be entered in “Number of all symbols”.

Structured Carrier Message (SCM).
MaxiCode was original developed by UPS® (United Parcel Service). In the operating mode "Structured
Carrier Message" (mode 2 and 3) there are defined data fields for UPS® - purposes. These can be entered in
the fields ”Service Class”, ”Country Code” and ”Postal Code”. In “Mode 3” you can use digits as well as
alphanumeric characters for the “Postal Code”.
The SCM contains of a header, which includes Date, Preamble, Service class, Country- and Postal Code.
These fields can be specified also by Esc-sequences directly in the barcode data (text property). To learn
more about this possibility refer to Setting SCM parameters

3.1.6 Data Matrix
In this menu you can set the properties specific to Data Matrix.

Screenshot Property Page
“Data Matrix”:

TEC-IT Datenverarbeitung GmbH Seite: 14
www.tec-it.com

Code format
Default: standard format (no special header included)
UCC/EAN: special format defined by UCC and EAN for encoding Application Identifiers. This format adds

the function character FNC1 at 1st position in the symbol.
Industry: supports peculiar industry formats (adds FNC1 at 2nd position).
Macro 05: [)>Rs05Gs is encoded at the beginning of the code.
Macro 06: [)>Rs06Gs is encoded at the beginning of the code.

TBarCode always encodes data using the newest ECC200 error correction method.

Symbol size
Defines the size of the symbol in rows and columns. Possible sizes are "10 x 10" to "144 x 144" modules for
a square symbol and "8 x 18" to "16 x 48" for a rectangular symbol. When set to default the minimal square
size is used (depending on input data).

Show as rectangle
Determines if the Data Matrix Symbol should be displayed as rectangle (checked) or square (unchecked -
default).

Structured Append
If you want to “connect” several Data Matrix symbols in order to encode larger quantities of data, then you
can use “Structured Append". A symbol identification number - which is entered in the “index” field - can be
assigned to each Data Matrix symbol. Its value can range from 1 to 16. This index indicates the order, in
which the data is joined after the reading/scanning process. The total number of arranged Data Matrix
symbols must be entered in “Number of all symbols”. The File ID has to be the same for all symbols.

3.1.7 QR Code

The QR Code symbology is like Data Matrix a 2-dimensional matrix symbology. Remarkable is the large data
capacity (up to 3000 ASCII characters or 7000 digits). The QR Code symbology was found to read a lot of
data with a bar code scanner within a minimum afford of time (QR Code means Quick Readable code).

Screenshot Property Page
“QR Code”:

TEC-IT Datenverarbeitung GmbH Seite: 15
www.tec-it.com

TEC-IT Datenverarbeitung GmbH Seite: 16
www.tec-it.com

Code format
Default: standard format; additionally you can choose from:

• UCC/EAN: special format defined by UCC and EAN. Used for encoding of so-called Application
Identifiers (FNC1 is added at first position).

• Industry: for special industry formats (FNC1 is inserted at second position). If you choose this value,
you also have to fill out the field Application Indicator (2 digits or 1 letter). It determines to which
industry format the input data (should) correspond(s).

Symbol version
Defines the version (= size) of the QR Code symbol by setting version number and number of rows and
columns. Possible values extend from „(1) 21 x 21" up to „(40) 177 x 177" modules for a square symbol. If
the property is set to default, the size is computed automatically based on the contents.

Error correction level
Defines the error correction level. You can choose from following possible values:

• (L)ow: Lowest level. Data recovery capacity is approximately up to 7%.

• (M)edium (default): up to 15%

• (Q)uartil: up to 25%

• (H)igh: Highest level. Up to 30%

Mask Pattern
Defines the mask pattern that is applied to the symbol to improve the readability.

• Default: The mask pattern is calculated automatically.

• 0..7: With the values 0 to 7 you choose the according mask pattern. It does make sense to specify
this setting directly, above all then, if you have to generate many symbols with a minimum afford of
time because the algorithm to calculate the optimal mask is a highly complex one (according to the
factor time).

Structured Append
If you want to “connect” several QR Code symbols in order to encode larger quantities of data, then you can
use “Structured Append". A symbol identification number - which is entered in the “index” field - can be
assigned to each QR Code symbol. Its value can range from 1 to 16. This index indicates the order, in which
the data is joined after the reading/scanning process. The total number of arranged Data Matrix symbols
must be entered in “Number of all symbols”.

Chained QR Code symbols are identified by the Parity byte. The Parity byte must be identical in all symbols.
To calculate its value, use the method „QR_StructAppParity“. You have to pass the whole data string (of all
chained symbols) as argument to this function.

3.1.8 Codablock F

Codablock F is a stacked symbology (just like PDF417) based upon the Code 128 character set. Each row
consists of a Code128 symbol, but extended with row indicators (row count and sequence) and an additional
check digit.

Screenshot Property Page
“Codablock F”:

Rows [2..44]
Indicates the number of rows used for encodation. The value must be between 2 and 44. Default: the
number of lines is calculated automatically depending on the number of input characters (utilizable data) set
in the text property.

Columns [4..62]
Defines the number of columns, which are to be printed. The value must be between 4 and 62. Start-, stop-,
line-indicator columns ,and code subset selectors are not taken into account. Default: the number of columns
is calculated automatically depending on the number of input characters.

Row height [1/1000 mm]
Sets the height of an individual row in 1/1000 mm. Default: the row height is calculated automatically.

Separator height [1/1000 mm]
Sets the height of a row separator in 1/1000 mm. Default: the height of the separator is calculated
automatically.

Code format
Default: standard format; additionally you can choose from:

TEC-IT Datenverarbeitung GmbH Seite: 17
www.tec-it.com

• UCC/EAN: special format defined by UCC and EAN. Used for encoding of so-called Application
Identifiers (FNC1 is added at first position).

3.1.9 Font

In this menu the font and its attributes used for the “human readable text” can be set. Please consider that
some fonts cannot be rotated (TrueType fonts usually feature rotating).

Property Page “Font”:

TEC-IT Datenverarbeitung GmbH Seite: 18
www.tec-it.com

3.1.10 Color
The colors of the bar code, text and the background can be set here. Windows standard colors are available
as well as system colors or user-defined colors.

Property Page “Color”:

BackColor
Indicates the background color of the bar code (color of the spaces).

ForeColor
Indicates the foreground color of the bar code (color of the bars).

TextColor
Color of the “human readable text”.

TEC-IT Datenverarbeitung GmbH Seite: 19
www.tec-it.com

TEC-IT Datenverarbeitung GmbH Seite: 20
www.tec-it.com

4 Program Interface (API) ActiveX

4.1 General
In the meantime most programming environments support the use of ActiveX objects. TBarCode ActiveX
objects are very comfortable and easy to handle and facilitate programming of bar code applications
substantially. The object can be inserted on a form, but also generated as (invisible) instance and used e.g.
for printing only. To learn more about object-oriented programming languages and get further information
about COM objects we refer to the appropriate technical literature.

4.1.1 Prog ID, Class ID

Prog ID TBarCode5 = „TBarCode5.TBarCode5“

Class ID TBarCode5 = {10ED9AE3-DA1A-461c-826A-CD9C850C58E2}

4.2 Properties
The object characteristics (Properties) are discussed in the following reference in alphabetic order. An
overview over the enumerators (defined names for bar code symbologies, check digits methods,...) as well
as the description of further bar code parameters can be found in the Bar Code Reference. The object
properties are essentially identical to those, which are used in the Property Pages – so we recommend the
reading of the section Property Pages.

In most cases you only need the properties Text and BarCode. for standard applications. Visual Basic and
other development environments are offering additional "Standard Properties" for ActiveX Controls (or COM
objects) that are not described here, e.g. Container, DataField, DragIcon...

4.2.1 General (for 1D and 2D types of bar codes)

Name Default value Calling, Description Get/Set

BackColor White Background color of the bar code (used if BackStyle = opaque). G / S

BackStyle Transparent (0)

Background representation. Possible values are transparent or
opaque (Bar code overwrites background).

Enum Type BKStyle or tagBKStyle, possible values: BKS_Transparent (0)
und BKS_Opaque (1)

G / S

BarCode Code128 (20)

Specifies the type of the bar code generated (symbology). For
possible values and implemented bar codes refer to the Bar Code
Reference.

Enumeration type BarCode e_BarCType or tag_BarCType.

G / S

BarWidthReduction -1
Reduction of the bar width. The bar width is reduced by the given
value in percent of the module width.
[0.. no reduction, 100..small bars disappear]

G / S

TEC-IT Datenverarbeitung GmbH Seite: 21
www.tec-it.com

BCHeightAct (...) -

BCHeightAct (eUnit As tag_Munit) As Double

EUnit: unit of the return value [eMUDefault (0)... unit of actual device context,
eMUPixel (1)... unit in pixel, eMUMM (2)... unit in mm]

Returns the actual height of the bar code in the specified units.

Get

BCHeightHdc (…) -

BCHeightHdc (hDC As Long, nWidth As Long, nHeight As Long,
eUnit As tag_MUnit) As Double

hDC: handle to device context; nWidth, nHeight: size of the bar code (set
value) in the unit of the hDC, eUnit: unit of the return value [eMUDefault (0)...
unit of actual device context, eMUPixel (1)... unit in pixel, eMUMM (2)... unit
in mm]

Calculates the bar code height for a given device context in the
desired units. That is meaningful with two-dimensional bar codes
(like PDF417). With linear (1D) codes like Code 39 or UPC the
height always corresponds to the bounding rectangle. The return
value of this function corresponds to nHeight, (in the respective unit)
if the height of the bar code object is adapted to the bounding
rectangle automatically, i.e. if no fixed line height was indicated for
PDF417. If a line height was given, then the return value
corresponds to the approximated bar code height (which is
calculated based on the given values). MaxiCode has always fixed
height and width.

Get

BCWidthAct (...) -

BCWidthAct (eUnit As tag_MUnit) As Double

EUnit: unit of the return value [eMUDefault (0)... unit of Device-Context,
eMUPixel (1)... unit in pixel, eMUMM (2)... unit in mm]

Returns the width of the actual bar code object in the given units.

Get

BCWidthHdc (…) -

BCWidthHdc (hDC As Long, nWidth As Long, nHeight As Long,
eUnit As tag_MUnit) As Double

hDC: handle to the device context; nWidth, nHeight: size of the bounding
rectangle (set value) in the unit of the hDC, eUnit: unit of the return value
[eMUDefault (0)... unit of the device context, eMUPixel (1)... unit in pixel,
eMUMM (2)... unit in mm]

Calculates the actually needed bar code width for a given device
context in the desired units. The return value of this function equals
nWidth (in the respective unit) if no fixed module width was given. In
this case the width of the bar code object adapts automatically to the
bounding rectangle. If a module width was specified, the return
value contains the approximated bar code width, which then is
calculated on the basis of the module width and the number of
modules needed for the representation of the data.

Get

CDMethod Default

Calculation method of the check digit. Possible values are listed in
the Bar Code Reference. Default: the standard method of each bar
code type is used (some bar codes have none as standard method,
but optional check digits recommended in their specification).

CDMethod has the enum type: e_CDMethod or tag_CDMethod.

G / S

CheckDigits - Contains the calculated check digits (as ASCII values of the single
check digits). Get

CountCheckDigits - Contains the number of check digits calculated. If there was no
check digit calculation performed, the property equals zero (Integer). Get

CountModules -
Contains the number of modules in the bar code. A module is the
smallest segment of which a bar code consists of. Applying a value
to the Modulwidth property can set the module width.

Get

CountRows - Number of Rows in the bar code (PDF417, Data Matrix). Only useful
for 2D bar codes. For PDF417: the number of Columns in the

Get

TEC-IT Datenverarbeitung GmbH Seite: 22
www.tec-it.com

symbol is CountModules divided by CountRows.

DisplayText Empty If another text instead of the bar code data should be printed as
human readable text, this has to be done with DisplayText. G / S

DrawStatus OK (0)

In the event handler code of “BeforeDraw” you can control the draw
process by modifying this property. The DrawStatus is checked by
the ActiveX Control before drawing and can be used to proceed in a
predefined way.

If set to OK the bar code will be drawn, if set to Cancel the drawing
will be canceled and if set to Retry the drawing start again (useful
when bar code properties are changed within the event handler, in
this case the event will be fired again).

Enumeration Type: tag_DrawStatus, Values: eDST_Cancel (1), eDST_Ok
(0), eDST_Retry (2)

G / S

Enabled True Defines, if the object is enabled or not (disabled). Default = enabled G / S

EscapeSequences False Defines, if Escape-Sequences (occurring in the utilizable data) shall
be translated. G / S

Font System dep.
(MS Sans Serif)

Font used for the bar code text („human readable text“). Class:
IFontType G / S

FontName System dep.
(MS Sans Serif)

Name of font used for the bar code text („human readable text“). Is
used if property Font is not accessible. G / S

FontSize System dep.
(8.75)

Size of font used for the bar code text („human readable text“). Is
used if property Font is not accessible. G / S

ForeColor Black Colors of the bars of the bar code (Type: OLE_COLOR) G / S

Format None
Format string, applies a format to the bar code content including
special control characters before printing. For possible values look
at the Bar Code Reference.

G / S

GuardWidth 0 Width of the „Guard Bar“ in 1/1000 mm. A value of 0 draws no
Guard Bar. G / S

InterpretInputAs eInt_Default

Defines, how input data should be interpreted.

Default, ANSI: characters in the input stream are interpreted as
ASCII characters from 0 to 255.

eInt_ByteStream: Input data is treated as byte stream. That means,
a 16-Bit character in the input stream is interpreted as two ASCII
characters (for processing binary and UNICODE data).

eInt_BYTE_HILO: like eInt_ByteStream, but Hi and LO bytes are
exchanged.

eInt_UNICODE: The input data is treated as UNICODE stream. This
mode is currently only supported in QR Code (KANJI mode).

G / S

LastError - The last occurred error is described as error message. Get

LastErrorNo - The last occurred error is described with an error number. (Overview
of error numbers: Bar Code Reference). Get

ModulWidth Default
The width of the smallest segment of which a bar code consists. The
entered unit is 1/1000 mm. If not set (default), the module width is
automatically adapted to the object size (bounding rectangle) and
the amount of utilizable data. If a value is set, the width of the

G / S

TEC-IT Datenverarbeitung GmbH Seite: 23
www.tec-it.com

modules and therefore of the whole bar code can be controlled (this
may also influence the readability!). If set, the bar code width
depends on the amount of data characters contained in the bar
code. For most bar code types the module width should not fall
below 0.19 mms.

ModWidthAct (...) -

ModWidthAct (eUnit As tag_MUnit) As Double

eUnit: unit of the return value [eMUDefault (0)... unit of the device-context,
eMUPixel (1)... unit in pixel, eMUMM (2)... unit in mm]

Returns the module width of the actual bar code in the given unit.

Get

ModWidthHdc (…) -

ModWidthHdc (hDC As Long, nWidth As Long, nHeight As Long,
eUnit As tag_MUnit) As Double

hDC: handle of the device context; nWidth, nHeight: size of the bounding
rectangle (set value) in the unit of the hDC, eUnit: unit of the return value
[eMUDefault (0)... unit of the device context, eMUPixel (1)... unit in pixel,
eMUMM (2)... unit in mm]

Calculates the module width for a given Device Context in the
desired units. Used if no value is applied to the property module
width and therefore the module width is calculated automatically.

Get

MustFit False

If the ModulWidth is set "manually" to a fixed value the bar code
could possibly become larger than the bounding rectangle. If this
occurs an error code can be generated by setting MustFit to True.

When using a fixed module width the bar code size depends on the
number of input characters (text property) and don’t adapt to the
bounding rectangle of the object.

In the reverse case: If you do not specify a fixed module width and
the module width is therefore calculated automatically, it could
happen that a module width smaller than 1 pixel may result (and
bars or gaps can’t be drawn properly). If this occurs, an error is also
produced if MustFit is set to True.

G / S

NotchHeight -1
Specifies the additional length of the synchronization bars in codes
like EAN and UPC. Unit [1/1000 mm]. Default = automatic
adjustment.

G / S

OptResolution False

Used to adapt the module width to the current pixel resolution.

Advantage: the readability of the bar code does not depend on the
resolution (relevant with small resolutions like screen).

Disadvantage: the real size of the bar code symbol is not identical
with the size of the control (Pay attention to the minimum width!).

True = Adapt module width, False = No Optimization

G / S

Orientation 0° (0)
Orientation of the bar code. The value is of the type DEGREE or
tag_DEGREE. Possible values are deg0 (0), deg90 (1), deg180 (2),
deg270 (3) for 0°, 90°, 180°, 270°.

G / S

PrintDataText True
Print the bar code content (utilizable data) as „human readable text“
in the selected font.

True = Yes, False = No
G / S

PrintTextAbove False
Print the text below or above the bar code.

False = Below, True = Above
G / S

Quality -1 The quality of the bar code in percent.
[0..unreadable, 100..perfect, no variance] Get

TEC-IT Datenverarbeitung GmbH Seite: 24
www.tec-it.com

QualityHdc -1

QualityHdc (hDC As Long, nWidth As Long, nHeight As Long) As
Long

hDC: Handle to device context; nWidth, nHeight: size of the bounding
rectangle in the current device unit of hDC.

Calculates the quality of a bar code fort he given device context in
percent.
[0..unreadable, 100..perfect, no variance]

Get

Ratio -
Ratio of the bars and gaps (as string). Default ratios are used if
empty. Possible values depend on the property RatioHint. For more
information refer to Print ratio und Parameters.

G / S

RatioDefault Default Value of the default ratio of the selected bar code type (contains the
default value of the property Ratio). Get

RatioHint Default

Possible format of the ratio string (used only as hint). Depends on
the selected bar code. Learn more about it in the section Parameter
of the Barcode-Reference. Default = predefined according to the
selected bar code type.

Get

SuppressErrorMsg False Suppress all Error Messages (if True). When an error is occurring,
nothing (instead of a “X”) will be drawn. G / S

Text „Adjust
Properties“

Bar code content (utilizable data) as string. The possible values
depend on the selected bar code type, therefore alphanumeric or
only purely numeric characters are permitted - otherwise an error is
produced. Permitted characters: check out the Bar Code Reference.
Hint for programming Visual Basic: after setting the text property the
command „DoEvents“ should be inserted (read more about...).

G / S

TextAlignment eAlDefault
Alignment of the human readable text. The value is of the type
e_BCAlign. Possible values are eAlDefault (0), eAlLeft (1), eAlRight
(2), eAlCenter (3) for default, left, right, center.

G / S

TextColor Black Color of the human readable text (VB-type: OLE_COLOR) G / S

TextDistance -1 Distance of the human readable text to the bar code. Unit [1/1000
mm]. Default = Distance is calculated automatically G / S

4.2.2 PDF417 Properties

Name Default Description Get/Set

PDF417_Colums -1
The number of columns that should be used for data
representation. The value must be between 3 and 90. Default
value = the number of columns is set automatically (Auto mode).

G / S

PDF417_ECLevel -1
Defines the error correction level. The value can be set between 0
(only error recognition) and 8 (highest). Default = the level is set
automatically according to the quantity of data (levels 2 to 5).

G / S

PDF417_RatioRowCol Empty

Defines the ratio between rows and columns in the PDF417
symbol. Default: 2:1. Input mask: „<row>:<columns>“ (e.g. „3:1“).
This setting only makes sense, if neither the number of columns
nor the number of rows is set to a fixed value (both = AutoMode).

G / S

TEC-IT Datenverarbeitung GmbH Seite: 25
www.tec-it.com

PDF417_RowHeight -1 The height of an individual row in 1/1000 mm. Default = the row
height is calculated automatically G / S

PDF417_Rows -1
The number of rows that should be used for data representation.
The value must be between 3 and 90. Default = the number of
rows is set automatically (Auto mode).

G / S

4.2.3 MaxiCode Properties

Name Default Description Get/Set

MAXI_AppendCount -1

Used for "Structured Append" (several MaxiCode symbols
connected in series). Sets the number of MaxiCode bar codes,
which are used in total for “Structured Append”. Default = no
“Structured Append“

G / S

MAXI_AppendIndex -1

Used for „Structured Append“. Sets the index of the actual
MaxiCode symbol within the item chain. Depending on this index,
the data will be reconstructed by the scanner after the reading
process.

G / S

MAXI_CountryCode - Country Code. Used in the modes 2 and 3 (SCM). Range: values
between 000 - 999 (string). Refer also to Setting SCM parameters. G / S

MAXI_Date Actual year

Under Date a year (the last two digits – the century) can be set,
which will be inserted automatically into the data stream on a pre-
defined place (before the utilized data). Scope: 00 to 99 (string).
Relevantly in particular Open System Standards. But the property
Preamble must be set to True. Refer also to Setting SCM
parameters.

G / S

MAXI_Mode 4

Operating mode (Long Int):

Mode 2: SCM Numeric – Structured Carrier Message (Postal Code
only numeric, up to 9 digits)

Mode 3: SCM Alphanumeric – Structured Carrier Message (Postal
Code alphanumeric, up to 6 chars)

Mode 4 for numeric and alphanumeric character sequences
(Standard Error Correction).

Mode 5: Full EEC – like Mode 4, but with Enhanced Error
Correction (safer, but less useable data)

G / S

MAXI_PostalCode -

The Postal Code. Used in the modes 2 and 3 (SCM - " Structured
Carrier Message"). String with altogether 9 digits or also different
characters (depends on MAXI_Mode). Refer also to Setting SCM
parameters.

G / S

MAXI_Preamble False

Preamble function: can be switched on or off. If True, the year
contained in the property MAXI_Date will be inserted. Relevant in
particular Open System Standards only. Refer also to Setting SCM
parameters.

G / S

MAXI_ServiceClass -
Service Class. Used in the modes 2 and 3 (SCM). Scope: values
between 000 and 999 as string. Refer also to Setting SCM
parameters.

G / S

TEC-IT Datenverarbeitung GmbH Seite: 26
www.tec-it.com

MAXI_Undercut -1

The Undercut influences the diameter of the bar code items
(hexagon). It can be changed, if reading problems with the used
output medium occur. Scope (long int): 0 to 100 [%]. Default value is
a size of 75%.

G / S

4.2.4 Data Matrix Properties

Name Default Description Get/Set

DM_Format eDMPr_Default

Code Format (the value is of the type tagE_DMFormat):

Default: standard format.

UCC/EAN: used for encoding UCC/EAN application identifiers (FNC1
is encoded as 1st code word).

Industry: supports peculiar industry formats (FNC2 at 2nd position)

Macro 05: [)>Rs05Gs is encoded at the beginning of the code

Macro 06: [)>Rs06Gs is encoded at the beginning of the code

G / S

DM_Size eDMSz_Default

Size of the symbol (type: tagE_DMSizes). The size is given in rows
and columns and can be between 10 x 10 and 144 x 144 for squares
or 8 x 18 and 16 x 48 for rectangles. Default is the minimum square
size.

G / S

DM_Rectangular False Determines if the symbol should be displayed as square (False:
default) or rectangle (true). G / S

DM_AppendCount -1
Used for "Structured Append" (several Data Matrix symbols
connected in series). Defines the number of symbols used in
connection. The value may be between 2 and 16.

G / S

DM_AppendIndex -1

Used for "Structured Append". Defines the index of the symbol in the
connected items. Depending on this index, the data will be
reconstructed by the scanner after the reading process. The value
may range between 1 and 16.

DM_AppendFileID -1 Used for "Structured Append". The FileID is the identifier of the item
chain. It must have the same value in all symbols of the chain!

4.2.5 QR Code Properties

Name Default Description Get/Set

QR_ECLevel eQREC_Medium

Error correction level

(L)ow: lowest level, recovery capacity up to 7%.

(M)edium: 15%

(Q)uartil: 25%

(H)igh: highest level, 30%

 G / S

QR_Format eQRPr_Default
Code Format (enumeration type tagE_QRFormat):

Default: default format.

UCC/EAN: for UCC/EAN Application Identifiers (FNC1 is added

G / S

TEC-IT Datenverarbeitung GmbH Seite: 27
www.tec-it.com

on first position).

Industry: Industry format (FNC2 at second position). If you choose
this setting, you also have to set the Application Indicator property
(Property QR_FmtAppIndicator).

QR_FmtAppIndicator Leer

Only in connection with Industry-Format. The Application Indicator
determines, to which industry format the input stream
corresponds. Possible values: 2 digits or 1 letter (upper and lower
case).

G / S

QR_Mask eQRMsk_Default

Mask that is applied to the QR Code to achieve the highest
possible readability.

Default: automatical calculation

values from 0 to 7. Makes sense in time-critical applications.

G / S

QR_Version eQRVers_Default

Symbol version (=size). Possible values are:

default: automatical calculation

Version 1: 21 x 21 modules

Version 2: 25 x 25 modules

...

Version 40: 177 x 177 modules

G / S

QR_AppendCount -1
Used in "Structured Append" mode (chaining of 2 or more QR
Code symbols). Defines the total number of the symbols in one
chain. Possible values: 2 to16.

G / S

QR_AppendIndex -1
Used in "Structured Append" mode. Defines the index of a symbol
in the symbol chain. The order of the QR Code symbols in this
chain depends on this index. Possible values: 1 to16.

G / S

QR_AppendParity -1

Used in "Structured Append" mode. The Parity Byte is the
identifier of a QR Code chain (important if there is more than one
symbol chain). Each symbol in the chain must have the same
value for the parity byte. Calculate the Parity Byte with the method
QR_StructAppParity.

G / S

QR_StructAppParity -

QR_StructAppParity (sText As String) As Integer

sText: content of the whole QR Code chain.

Used in "Structured Append" mode. Calculates the parity byte of a
symbol chain. After calculating the value set the parity bytes of all
the symbols in the symbol chain to this value.

Get

4.2.6 Codablock F Properties

Name Default Description Get/Set

CBF_Colums -1

The number of columns that should be used for data
representation. The value must be between 4 and 62. Default
value = the number of columns is set automatically (Auto
mode).

G / S

CBF_Format eCBFPr_Default

Code Format (enumeration type tagE_CBFFormat):

Default: default format.

UCC/EAN: for UCC/EAN Application Identifiers (FNC1 is
added on first position).

G / S

CBF_RowHeight -1 The height of an individual row in 1/1000 mm. Default = the
row height is calculated automatically G / S

TEC-IT Datenverarbeitung GmbH Seite: 28
www.tec-it.com

CBF_Rows -1
The number of rows that should be used for data
representation. The value must be between 2 and 44. Default
= the number of rows is set automatically (Auto mode).

G / S

CBF_RowSeparatorHeight -1 The height of a row separator in 1/1000 mm. Default = the
row separator height is calculated automatically G / S

4.2.7 Barcode Properties within Event-Handlers

The bar code properties are internally calculated and updated within the Redraw (Paint-Event). If any bar
code property is set within an Event Handler (e.g. setting the text property within onClick), then the (new)
redrawing of the bar code takes place only after the current Event Handler has been processed. That can
lead to non-actual values when getting a property within an event handler.

Example: If you would like to retrieve the property "CountModules" after modifying the bar code text within an
event handler, inexact results would be returned (until the current event handler has been finished).
Therefore in Visual Basic it would be necessary to insert the instruction "DoEvents" before getting a property.
That guarantees that an internal Redraw takes place and valid values are returned. The DoEvents instruction
causes that all events (thus also the pending new drawing of the bar code) are processed before the actual
process is proceeding. When calling the BCDraw-method, the internal recalculating of the bar code
properties takes place in any case (independent of DoEvents).

4.3 Methods
In the following outline you find the methods of the TBarCode Control separated according to their use for
standard and web applications. Visual Basic and other development environments are offering additional
"standard methods" for ActiveX Controls, they not documented here (e.g. SetFocus (), Move (),...).

4.3.1 Methods for Standard Applications

Method (parameter), Result Description

AboutBox () Pops up the About Box with information about TBarCode ActiveX

CopyToClipboard ()

On error standard exception
Copies the bar code into the Windows Clipboard. This gives the ability to
insert it into other applications (data format = EMF).

CopyToClipboardEx (hDC As Long,
nWidth As Long, nHeight As Long,
sFileName As String)

On error standard exception

hDC: handle of the Device Context. If hDC = 0
(standard) a screen device context will be used.

nWidth, nHeight: width and height of the bar code.
If values <= 0 are used, the size of the object will
be taken from the actual screen resolution (pixel).

sFileName: name of the output file (*.EMF, a path
can be used). If sFileName = NULL or an empty
string (“”) no file will be written. If sFileName is not
valid, the return value will be False.

Copies the bar code in EMF (Enhanced Metafile Format) into the
clipboard. For extended applications this method allows to specify the
device context and an additional output file (optional use). The file will be
written in EMF.

Note: Do not use a printer device context with screen standard sizes,
because the coordinates do not agree!

TEC-IT Datenverarbeitung GmbH Seite: 29
www.tec-it.com

Licencing ()
Calls the dialog box for manual licensing of the TBarCode Control. Gives
the ability to license the product completely new or afterwards, when the
application has been delivered.

LicenseMe (sLicensee As String, eKind As
tag_licKind, nLicenses As Long,
sLicenseKey As String, eProductID As
tag_licProduct)

sLicensee: name of the licensee (string).

eKind: kind of license, enums: eLicKindSingle (1),
eLicKindSite (2), eLicKindDeveloper (3)

nLicenses: number of licenses (usual 1).

sLicenseKey: license key (to be ordered at TEC-
IT)

EProductID: Product ID = eLicProd1D (8),
eLicProd2D (9)

Registers the license data for TBarCode ActiveX in Products in the
windows registry (in exchange for manual licensing). The license data
(license key) can be ordered at TEC-IT (http://www.tec-it.com/order).
Suggested calling: once at the application startup. At least once, when
doing the first setup of your own application for each windows system.

The Product ID indicates which bar code types will be licensed. One-
dimensional, linear bar codes (1D = Code128, UPC, EAN, Code39,…) or
two-dimensional bar codes (2D = PDF417, MaxiCode, Data Matrix).

BCDraw (hDC As Long, nLeft As Long,
nTop As Long, nWidth As Long, nHeight
As Long)

on error standard exception

hDC: handle to Device Context (where you want to
print to).

nLeft, nTop: coordinates of the left top point of the
bar code relative to hDC.

nWidth, nHeight: width and height of the bar code

This method is used to print a bar code to a given device context. The
main usage is to print out a bar code on a printer. The unit of the
coordinates and sizes depends on the mapping mode of the selected
device context (Pixel, inch, mm).

Refresh () Recalculates and redraws the content of the ActiveX Control. You can
do this by posting a Paint Event to the message queue.

SaveImage (sFileName As String,
eImageType As tag_ImageType, nXSize As
Long, nYSize As Long, nXRes As Long,
nYRes As Long)

on error standard exception

sFileName: name of the output file (*.JPG, *.BMP,
*.EMF,...)

eImageType: type of the image / bitmap (refer
image types).

nXSize, nYSize: size of the bar code in [pixel]

nXRes, nYRes: resolution in [dpi]

Saves the content of the bar code object as Image File (Format Bmp,
Jpg, Emf,...). The values of XSize and YSize should be increased, if the
bar code is not readable or if the bar code contains more data (as
usual). The values of XRes and YRes can affect the printing size when
printing from graphic- or painting programs. A description of the
parameter eImageType can be found later in the section: Image types.

Note: If used within web applications (ASP, PHP), ensure that the web
server (user) has the rights for writing into the desired directory.

SaveImageEx (hDC As Long, sFileName
As String, eImageType As tag_ImageType,
nQuality As Long, nXSize As Long, nYSize
As Long, nXRes As Long, nYRes As Long)

on error standard exception

hDC: handle to Device Context (to be saved with)

sFileName: name of the image file (*.JPG, *.BMP,
*.EMF,...)

eImageType: type of image / bitmap

nQuality: quality of the image in connection with a
compression algorithm (refer compression modes).

nXSize, nYSize: size of the bar code (unit as hDC)

nXRes, nYRes: resolution (unit as hDC)

Saves the content of the bar code object as Image File in connection
with a desired device context (if not needed hDC can be set to 0). The
values of XSize and YSize should be increased, if the bar code is not
readable or if the data density is high. The values of XRes and YRes can
affect the printing size when printing from graphic- or painting programs.

The image quality sets the compression algorithm (depending on the
image type), too. A description of the parameters eImageType and
nQuality can be found later in the section: Image types.

With vector EPS files you can choose between using Windows fonts (1)
and using postscript compatible fonts (1).

Note: If used within web applications (ASP, PHP), ensure that the web
server (user) has the rights for writing into the desired directory.

http://www.tec-it.com/order

TEC-IT Datenverarbeitung GmbH Seite: 30
www.tec-it.com

4.3.2 Methods for Web Applications

TBarCode ActiveX offers special methods for web applications. With these methods simple integration of bar
codes into ASP (Active server Pages), PHP (PHP Hypertext Preprocessor) or other dynamic web extensions
become possible.

Note: the methods ConvertToStream and ConvertToStreamEx are available only in connection with a
Developer- or Web-License (but can be tested within the demo version).

PHP: Because the data type „Variant“ is not full supported within PHP, we suggest for PHP applications to
use the method SaveImage to save the bar code temporarily as image file (which can be referred to at the
client-side within the HTML-Code).

We call your attention to the section Resolution and Readability and to our ASP and PHP samples,
obtainable at our download area: http://www.tec-it.com/Download/

Method (parameter), Result Description

ConvertToStream (eImageType As
tag_ImageType, nXSize As Long, nYSize
As Long, nXRes As Long, nYRes As
Long)

Returns: DataStream As Variant (supported
by ASP)

eImageType: type of the image / bitmap: eIMBmp
(0), eIMJpg(4), eIMPng(6), eIMTif(7); not
supported: eIMEmf (1), eIMEps (2), eIMGif (3),
eIMPcx(5);

nXSize, nYSize: size of the bar code in [pixel]

nXRes, nYRes: resolution in [dpi] (don’t affects
the browser view).

Returns the content of the object (bar code) as Image data stream, which
can be sent to the client browser (e.g. Response.BinaryWrite). The image
format is selectable (for web-applications: JPG, PNG or BMP).

The size of the bitmap [Pixel] and the resolution [dpi] can be selected
separately for X and Y dimension.

The values of XSize and YSize should be set higher, if the bar code is not
readable or if the bar code requires high data density. The values of
XRes and YRes can affect the printing size when printing from graphic- or
painting programs (but not when printing from the browser). A description
of the parameter eImageType can be found later in the section: Image
types

ConvertToStreamEx (hDC As Long,
eImageType As tag_ImageType, nQuality
As Long, nXSize As Long, nYSize As
Long, nXRes As Long, nYRes As Long)

Returns: DataStream As Variant (supported
by ASP)

hDC: handle to Device Context; nQuality: image
quality in connection with compression (refer to
compression modes).

Other parameters – look at ConvertToStream
above.

Like above it returns the content of the object (bar code) as Image data
stream, which can be sent to the client browser. In addition you can
control the device context and the quality (relevant with compression
algorithms) of the image.

The image data format, the size [Unit defined by hDC] and the resolution
[dpi] for X and Y dimension is selectable.

SaveImage (sFileName As String,
eImageType As tag_ImageType, nXSize
As Long, nYSize As Long, nXRes As
Long, nYRes As Long)

For more details refer to previous section.

Saves the content of the bar code object as image file. (bitmap data
format: Bmp, Jpg, Emf,...).

http://www.tec-it.com/Download/

TEC-IT Datenverarbeitung GmbH Seite: 31
www.tec-it.com

SaveImageEx (hDC As Long, sFileName
As String, eImageType As
tag_ImageType, nQuality As Long,
nXSize As Long, nYSize As Long, nXRes
As Long, nYRes As Long)

For more details refer to previous section.

Saves the content of the bar code object as image file. (bitmap data
format: Bmp, Jpg, Emf,...). For enhanced use, this method allows to
control the device context and quality/compression parameters.

4.3.3 Error Handling

Main change since V2.1.8: In V2.1.8 a status code was returned – now from V3.x (and later) an exception is
raised if an error occurs.
This exception can be handled in Visual Basic (e. g.) in the following way:

On Error Goto ErrHandler

Object.BCDraw (hDC, 0, 0, 500, 300)

...

ErrHandler:

...

Within the ErrHandler you can test the TBarCode Properties LastErrorNo and LastError, or the System Err-
object.

4.4 Events
The TBarCode ActiveX object fires the following events:

Event Description

Click Fired when the ActiveX control was clicked

DoubleClick Fired when the ActiveX control was double-clicked

MouseDown Fired when a mouse button is pressed when over the control

MouseUp Fired when a mouse button is released when over the control

MouseMove Fired when the mouse cursor is moved over the control

BeforeDraw Fired before the bar code will be drawn. This event is not fired when using SaveImage /
ConvertToStream methods.

TEC-IT Datenverarbeitung GmbH Seite: 32
www.tec-it.com

5 Program Interface (API) DLL

5.1 General
The DLL supplies the underlying data-structure and code-functionality for the ActiveX. So the DLL functions
are nearly equivalent to the ActiveX properties and methods. Note: the DLL has the same extension as the
ActiveX (= “OCX”), that’s because of its internal data structure - but you can use it as DLL!

Hint: when using the DLL make sure that it’s located in a path which is included in the “PATH” environment
variable. If you are using image functions (SaveImage, ConvertToStream) – you have to put the VIC32.DLL
to the same path as the DLL (or a windows system path).

Include the files “TECBarCode.h” and “TECBCenum.h” to get full access to the DLL functions within
C/C++. “TECBarCode.h” contains the function definitions; “TECBCenum.h” contains all enumerations.

5.1.1 Basic Sequence

The function calls and basic steps to produce a bar code are as following (in the appropriate order):

Function call Description

BCLicenseMe

This function licenses the DLL and inserts the license key into the registry. Licensing must be
performed at least once per computer system.

For developer licenses owning a “Mem:” License Key that is not saved into the registry: call this
function each time you start up your application (or before you print a bar code).

BCAlloc This function sets up and initializes the internal bar code info-structure. It must be called before
any other BCxxxx function. You receive a handle that is used for all other function calls.

BCSetBCType Sets the type of the bar code (symbology) e. g. Code39, Code128, UPC, EAN, 2OF5…

BCGetMaxLenOfData
Optional: This function returns the maximum allowed number of chars for the bar code text
(Raw Data) – e. g. for EAN8 it would return 8. This check is optional, but recommended if you
do not exactly know the length of data input for your bar code.

BCSetText Sets the data content (data characters) of the bar code.

BCSetModWidth
Optional: With this function you can specify the module width. If not specified, the module width
adapts automatically to the bar code dimensions. Within this step you can set other bar code
properties, as you need them.

BCCheck This function checks if the data characters are valid for the selected bar code type. If invalid
data was encountered it returns an error-code <> 0. It must be called before BCCalcCD ().

BCCalcCD This function computes the check digit(s) for the given data. It must be called before BCCreate
().

BCCreate This function prepares the bar code info-structure to be drawn with BCDraw. It returns ErrOk if
everything is ok. If not, it returns an error code that specifies the error in more detail.

 After BCCreate you can apply the methods GetWidth, GetHeight, CopytoClipboard, etc.

TEC-IT Datenverarbeitung GmbH Seite: 33
www.tec-it.com

BCDraw
This function draws the bar code into the given device context. The bar code dimensions are set
through handling over the coordinates of a bounding rectangle. No special mapping is
performed.

BCFree This function de-initalizes the bar code info-structure and frees allocated memory. It must be
called as last function.

If any of the BCxxxx functions in the above described order returns an error code not equal to zero than DO
NOT call subsequent BCxxxx functions except of BCDeInit (). An error code <> 0 indicates an error condition
at subsequent calls (except to BCDeInit) – they may fail and produce unexpected results.

5.2 Function Reference
General: to learn more about bar codes and the adaptation of the bar code characteristics to your needs look
at the information provided in the other sections of this documentation (the properties of ActiveX and DLL are
vastly the same).

5.2.1 Init- / Deinit Functions

Function Description

BCAlloc (t_BarCode**
pBarCode)
pBarCode: Ptr to bar code
structure (OUT); Returns:
ERRCODE Err_OK if OK

The BCAlloc function allocates and initializes the internal info structure to store a bar
code in memory. It sets the pointer that you handle over to this function. For each bar
code you want to use, you have to call this function to get an appropriate handle
(pBarCode).

BCFree (t_BarCode* const
pBarCode)
PBarCode: Ptr to bar code
structure (IN); Returns:
ERRCODE Err_OK if OK

De-initializes and frees the bar code info-structure.

5.2.2 Set / Get Functions (Properties)

Function Description

BCSetColorBC (t_BarCode* const
pBarCode, COLORREF color)
pBarCode: Ptr to bar code structure; color: color;
Returns: ERRCODE

Sets bar code color (Default it is black).

BCGetColorBC (t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code structure; Returns:
COLORREF color

Gets the bar code color.

BCSetColorFont (t_BarCode* const
pBarCode, COLORREF color)
pBarCode: Ptr to bar code structure; color: color;
Returns: ERRCODE

Sets the color of the bar code font.

TEC-IT Datenverarbeitung GmbH Seite: 34
www.tec-it.com

BCGetColorFont (t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code structure; Returns:
COLORREF color

Gets the color of the bar code font.

BCSetColorBk (t_BarCode* const
pBarCode, COLORREF color)
pBarCode: Ptr to bar code structure; color: color;
Returns: ERRCODE

Sets the background color of the bar code.

BCGetColorBk (t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code structure; Returns:
COLORREF color

Gets the background color of the bar code.

BCSetBkMode (t_BarCode* const
pBarCode, LONG nMode)
pBarCode: Ptr to bar code; nMode: background
mode; Returns: ERRCODE

Sets the background mode for the bar code painting (Transparent = 1,
Opaque = 2).

BCGetBkMode (t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code; Returns: LONG
nMode;

Gets the background mode.

BCSetLogFont (t_BarCode* const
pBarCode, const LOGFONT* lf)
pBarCode: Ptr to bar code; lf: Ptr to logfont;
Returns: ERRCODE

Sets the font (face, size…) of the bar code text. Handle over a log font
structure whose lfHeight field must be set to the point size of the font!

For printing and SaveImage:

LOGFONT font size = size [point]

Painting on the screen (Screen DC):

pFont ifHeight = -MulDiv (pointsize, dc. GetDeviceCaps
(LOGPIXELSY), 72);

BCGetLogFont (t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code; Returns: Ptr to
logfont;

Gets the font info as a pointer to a logfont structure.

BCSetBCType (t_BarCode* const
pBarCode, e_BarCType eType)
pBarCode: Ptr to bar code; eType: bar code type;
Returns: ERRCODE

Sets the type of bar code (symbology) you want to use. Look at the Bar
Code Reference to get an overview of the enumerations.

BCGetBCType (t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code; Returns: e_BarCType
etype

Gets information of the bar code type currently in use.

BCSetCDMethod (t_BarCode* const
pBarCode, e_CDMethod eMethod)
pBarCode: Ptr to bar code; eMethod: check digit
method; Returns: ERRCODE

Sets the method of check digit calculation for the bar code. Look at the
Bar Code Reference to get an overview of the enumerations.

BCGetCDMethod (t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code; Returns:
e_CDMethod eMethod

Gets the check digit method currently in use.

TEC-IT Datenverarbeitung GmbH Seite: 35
www.tec-it.com

BCSetAutoCorrect (t_BarCode* const
pBarCode, BOOL bAutoCorrect)
pBarCode: Ptr to bar code; bAutoCorrect: on/off
(T/F); Returns: ERRCODE

Sets Auto correct for bar code type 2OF5 ITF on / off. Should always be
TRUE. For Code 2OF5 ITF it inserts a leading zero if the number of data
digits is odd.

BCGetAutoCorrect (t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code; Returns: BOOL
bAutoCorrect;

Gets the Auto correct property (TRUE = On, FALSE = Off).

BCSetRotation (t_BarCode* const
pBarCode, e_Degree eRotation)
pBarCode: Ptr to bar code; eRotation: rotation of
barcode; Returns: ERRCODE

Sets the rotation of the bar code (enumerations for eRotation: deg0,
deg90, deg180, deg270).

BCGetRotation (t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code; Returns: e_Degree
eRotation

Gets the rotation of the bar code.

BCSetPrintText (t_BarCode* const
pBarCode, BOOL bReadAble, BOOL
bAbove)
pBarCode: Ptr to bar code; bReadable: print
readable text (T/F); bAbove: print text above bar
code (T/F); Returns: ERRCODE

Sets if the “human readable text” should be printed and (if yes) whether
the text should be printed above or below the bar code. Default: text will
be printed and below the bar code.

BCGetPrintText (t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code; Returns: BOOL
bReadable

Gets information whether bar code text will be printed (TRUE = Yes,
FALSE = No).

BCGetTextAbove (t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code; Returns: BOOL
bAbove

Gets information whether bar code text will be printed above or below the
bar code (TRUE = Above, FALSE = Below).

BCSetGuardWidth (t_BarCode* const
pBarCode, LONG nGuardWidth)
pBarCode: Ptr to bar code; nGuardWidth: guard
width; Returns: ERRCODE

Sets the width of the guard bar in [1/1000 mm].

BCGetGuardWidth (t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code; Returns: LONG
nGuardWidth

Gets the width of the guard bar in [1/1000 mm].

BCSetTextDist (t_BarCode* const
pBarCode, LONG nTextDist)
pBarCode: Ptr to bar code; nTextDist: text
distance; Returns: ERRCODE

Sets the text distance: bar code <--> text [1/1000 mm].

BCGetTextDist (t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code; Returns: LONG
nTextDist

Gets the distance between bar code and text [1/1000 mm].

TEC-IT Datenverarbeitung GmbH Seite: 36
www.tec-it.com

BCSetNotchHeight (t_BarCode* const
pBarCode, LONG nHeight)
pBarCode: Ptr to bar code; nHeight: notch height;
Returns: ERRCODE

Sets the notch height for the bar code types EAN and UPC in the unit
[1/1000 mm].

BCGetNotchHeight (t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code; Returns: LONG
nHeight

Gets the notch height [1/1000 mm].

BCSetTranslateEsc (t_BarCode* const
pBarCode, BOOL bTranslate)
pBarCode: Ptr to bar code; bTranslate:
Translation On/Off (T/F); Returns: ERRCODE

Enables or Disables the translation of escape sequences within the bar
code text. (See ESC Sequences for more information).

BCGetTranslateEsc (t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code; Returns: BOOL
bTranslate

Gets info about translation of escape sequences (TRUE = On, FALSE =
Off).

BCSetMustFit (t_BarCode* const
pBarCode, BOOL bMustFit)
pBarCode: Ptr to bar code; bMustFit: MustFit
On/Off (T/F); Returns: ERRCODE

Sets the “MustFit” flag. “MustFit” means that the bar code must fit into the
bounding rectangle (of the OLE container) during drawing. Important
when using a fixed module width and the bar code width (not the object
width) therefore changes corresponding to the amount of input characters
of the Text property. Also “MustFit” verifies if the module width is less
than 1 pixel (Error). If MustFit is set to TRUE an error may be produced
due to the above reasons during the Paint method.

BCGetMustFit (t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code; Returns: BOOL
bMustFit

Gets information about the “MustFit” flag.

BCSetOptResolution (t_BarCode* const
pBarCode, BOOL bOpt)
pBarCode: Ptr to bar code; bOpt: Optimizing
On/Off (T/F); Returns: ERRCODE

Sets the “Optimise for Resolution” Flag. If set to true, the readability of
the bar code gets independent from the given resolution (interesting
when used at small output resolutions (e.g. screen). The width of the bar
code may shrink. Be care: watch the minimal size of the bar code.

BCGetOptResolution (t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code; Returns: BOOL

Gets information about Optimise flag.

BCSetText (t_BarCode* const pBarCode,
LPCTSTR szText, LONG nLen)
pBarCode: Ptr to bar code; szText: data content
of bar code; nLen: length of input string (0.. end of
string is indicated by “\0”); Returns: ERRCODE

Sets the bar code text (data content). String may contain alphanumeric or
only numeric data according to the bar code type.

BCSetTextW(t_BarCode* const pBarCode,
LPCWSTR szText, LONG nLen)
pBarCode: Ptr to bar code; szText: data content
of bar code; nLen: length of input string (0.. end of
string is indicated by “\0”); Returns: ERRCODE

Like BCSetText, but for UNICODE character interpretation. You can use
this function only for QR-Code.

BCGetText (t_BarCode* const pBarCode)
pBarCode: Ptr to bar code; Returns: LPCTSTR
szText

Gets the bar code text (Raw Data). If the string is not terminated by “\0”,
you have to use BCGetTextLen to read the correct information.

TEC-IT Datenverarbeitung GmbH Seite: 37
www.tec-it.com

BCGetTextW (t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code; Returns: LPCWSTR

Like BCGetText, but for UNICODE character interpretation.

BCGetTextLen (t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code; Returns: LONG nLen

Gets the length of the bar code text (Raw Data). Used in connection with
BCGetText. If nLen = 0, the szText string is terminated by “\0”.

BCIsTextUnicode (t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code; Returns: BOOL

Determines, if actual interpretation mode is ANSI (standard) or UNICODE
(text was set with BCSetTextW)

BCSetModWidth (t_BarCode* const
pBarCode, LPCTSTR szModWidth)
pBarCode: Ptr to bar code; szModWidth: module
width; Returns: ERRCODE

Sets the module width in [1/1000 mm] of the bar code. If set, the bar code
adapt in its width to the length of the data content. When drawing (Paint)
the size of the bounding rectangle must be wide enough to avoid clipping.

BCGetModWidth (t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code; Returns: LPCTSTR
szModWidth

Gets the module width (as it was set by BCSetModWidth) as string
[1/1000 mm].

BCSetRatio (t_BarCode* const pBarCode,
LPCTSTR szRatio)
pBarCode: Ptr to bar code; szRatio: ratio string;
Returns: ERRCODE

Sets the ratio of the bars to the gaps in the bar code – look at Ratio,
RatioHint (Ratio Format) for more information (only for special
applications).

BCGetRatio (t_BarCode* const pBarCode)
pBarCode: Ptr to bar code; Returns: LPCTSTR
szRatio

Gets the ratio as string (as it was set by BCSetRatio).

BCSetDisplayText (t_BarCode* const
pBarCode, LPCTSTR szText);
pBarCode: Ptr to bar code; szText: text to
display; Returns: ERRCODE

Sets the text that should be printed as human readable text instead of the
bar code data.

BCGetDisplayText (t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code; Returns: LPCTSTR
display text

Gets the text that should be printed as human readable text instead of
the bar code data.

BCSetBarWidthReduction (t_BarCode*
pBarCode, LONG nFactor)
pBarCode: Ptr to bar code; nFactor: reduction
factor; Returns: ERRCODE

Sets the bar width reduction factor (in percent).

BCGetBarWidthReduction (t_BarCode*
pBarCode);
pBarCode: Ptr to bar code; Returns: LONG

Returns the bar width reduction factor (in percent).

BCSetTextAlignment (t_BarCode* const
pBarCode, e_BCAlign eAlign

);

pBarCode: Ptr to bar code; eAlign: alignment;
Returns: ERRCODE

Sets the text alignment.

TEC-IT Datenverarbeitung GmbH Seite: 38
www.tec-it.com

BCGetTextAlignment (t_BarCode* const
pBarCode

);
pBarCode: Ptr to bar code; Returns: e_BCAlign

Returns the text alignment

BCSet_EPS_SubstwDeviceFont
(t_BarCode* const pBarCode, Bool
bSubstwDevFnt)
pBarCode: Ptr to bar code; bSubstwDevFnt:
Substitute with Postscript fonts; Returns:
ERRCODE

Used with SaveImage / SaveImageEx: Sets in a vector EPS whether the
Windows font names are used for Postscript

BCGet_EPS_SubstwDeviceFont
(t_BarCode* const pBarCode)
pBarCode: Ptr to bar code; Returns: BOOL

Used with SaveImage / SaveImageEx: Returns whether a Windows or a
Postscript compatible font name is used.

RSS Properties

BCGet_RSS_SegmPerRow (t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code;

Get Data Segments per Row (RSS Expanded Stacked)

BCSet_RSS_SegmPerRow (t_BarCode* const
pBarCode, LONG nSegmPerRow)
pBarCode: Ptr to bar code;
nSegmPerRow: number of Segments/row [2..22]

Set Data Segments per Row (RSS Expanded Stacked)

BCGet_RSS_XRows (t_BarCode* const pBarCode)
pBarCode: Ptr to bar code;

Get number of vertical modules (rows) with height X
(=module width)

BCGet_RSS_XCols (t_BarCode* const pBarCode)
pBarCode: Ptr to bar code;

Get number of horizontal modules (cols) with module width X

5.2.3 Set / Get Functions for PDF417

Function Description

BCSet_PDF417_Rows (t_BarCode* const,
pBarCode, LONG nRows)
pBarCode: Ptr to bar code; nRows: number of rows;
Returns: ERRCODE

Sets the number of graphic rows [3..90] when using PDF417. If
not set, the number of rows is calculated automatically (automatic
mode).

BCGet_PDF417_Rows (t_BarCode* const)
pBarCode: Ptr to bar code; Returns: LONG nRows

Gets the number of graphic rows (as set with
BCSet_PDF417_Rows). Returns only the property value, but not
the number of rows actual used in automatic mode.

BCSet_PDF417_Columns (t_BarCode* const
pBarCode, LONG nColumns)
pBarCode: Ptr to bar code; nColumns: number of cols;
Returns: ERRCODE

Sets the number of graphic columns [1...30] when using PDF417.
If not set, the number of columns is calculated automatically
(automatic mode).

TEC-IT Datenverarbeitung GmbH Seite: 39
www.tec-it.com

BCGet_PDF417_Columns (t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code; Returns: LONG nColumns

Gets the number of graphic columns (as set with
BCSet_PDF417_Columns). Returns not the number of columns
actual used in automatic mode.

BCSet_PDF417_ECLevel (t_BarCode* const
pBarCode, LONG nLevel)
pBarCode: Ptr to bar code; nLevel: Error Correction
Level; Returns: ERRCODE

Sets the “Error Correction Level” of PDF417. Possible values are
[0...8] where 0 mean only error recognition (no EC) and 8 mean
highest Level of EC. If not set, the ECL is chosen automatically for
you.

BCGet_PDF417_ECLevel (t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code; Returns: LONG nLevel

Gets the value that is set by BC_Set_PDF417_ECLevel.

BCSet_PDF417_RowHeight (t_BarCode* const
pBarCode, LONG nHeight)
pBarCode: Ptr to bar code; nHeight: row height; Returns:
ERRCODE

Sets the height of a PDF417 row in [1/1000 mm]. If not set, the
height is calculated according to the bounding rectangle when
drawing (BCDraw). If set, ensure that the bounding rectangle is
big enough to avoid clipping.

BCGet_PDF417_RowHeight (t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code; Returns: LONG nHeight

Gets the value that is set by BCSet_PDF417_RowHeight.

BCSet_PDF417_RowColRatio (t_BarCode* const
pBarCode, LPCTSTR szRatio)
pBarCode: Ptr to bar code; szRatio: ratio between rows
and cols; Returns: ERRCODE

Sets the ratio between rows and columns. Does only work, if
neither rows nor columns are set to a fixed value.

BCGet_PDF417_RowColRatio(t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code; Returns: LPCTSTR szRatio

Returns the Ratio set by BCSet_PDF417_RowColRatio.

5.2.4 Set / Get Functions for MaxiCode

Function Description

BCSet_Maxi_Mode (t_BarCode* const pBarCode,
LONG nMode)
pBarCode: Ptr to bar code; nMode: mode [2..5]; Returns:
ERRCODE

Sets the operating mode for MaxiCode. See the documentation
of the ActiveX properties for more information (MaxiCode
Properties).

BCGet_Maxi_Mode (t_BarCode* const pBarCode)
pBarCode: Ptr to bar code; Returns: LONG mode

Gets the value that is set by BCSet_Maxi_Mode.

BCSet_Maxi_Append (t_BarCode* const pBarCode,
LONG nSum, LONG nIndex)
pBarCode: Ptr to bar code; nSum: number of symbols [2..8];
nIndex: index of actual symbol [1..8]; Returns: ERRCODE

Needed for "Structured Append" (several MaxiCode items
connected in series). Sets the number of MaxiCodes that are
used in total for “Structured Append” and the index of the actual
MaxiCode symbol within this item chain. If not set, no
“Structured Append“ is used.

BCGet_Maxi_AppendSum (t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code; Returns: LONG nSum

Gets the value of the nSum property set by
BCSet_Maxi_Append.

TEC-IT Datenverarbeitung GmbH Seite: 40
www.tec-it.com

BCGet_Maxi_AppendIndex (t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code; Returns: LONG nIndex

Gets the value of the nIndex property set by
BCSet_Maxi_Append.

BCSet_Maxi_UnderCut (t_BarCode* const
pBarCode, LONG nUndercut)
pBarCode: Ptr to bar code; nUndercut: undercut [0..100%];
Returns: ERRCODE

Undercut of the MaxiCode hexagons, of which the symbol
consists of. Indication in percent [1...100]. For scanning
problems only.

BCGet_Maxi_UnderCut (t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code; Returns: LONG nUndercut

Gets the value of the nUndercut property set by
BCSet_Maxi_Undercut.

BCSet_Maxi_UsePreamble (t_BarCode* const
pBarCode, BOOL bUse, LPCTSTR szDate)
pBarCode: Ptr to bar code; bUse: use Preamble (T/F);
szDate: preamble date (last 2 digits of year); Returns:
ERRCODE

Sets MaxiCode to use the “Preamble function” ("[)>..."). If bUse
= True, the year contained in szDate will be inserted.

BCGet_Maxi_UsePreamble (t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code; Returns: BOOL bUse

Gets the value of the bUse property set by
BCSet_Maxi_UsePreamble.

BCGet_Maxi_PreambleDate (t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code; Returns: LPCTSTR szDate

Gets the value of the szDate property set by
BCSet_Maxi_UsePreamble.

BCSet_Maxi_SCM (t_BarCode* const pBarCode,
LPCTSTR szServiceClass, LPCTSTR
szCountryCode, LPCTSTR szPostalCode)
pBarCode: Ptr to bar code; szServiceClass: Service Class
[“000”..”999”]; szCountryCode: Country Code [“000”..”999”];
szPostalCode: Postal Code [9 digits or up to 6 chars];
Returns: ERRCODE

In operating mode SCM (mode 2 and 3) you can specify the
Service Class, Country Code and Postal Code with this function
call.

The allowed values for the Postal Code are depending on the
operating mode (Mode 3: Postal Code = alphanumeric, up to 6
chars).

BCGet_Maxi_SCMServClass (t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code; Returns: LPCTSTR
szServiceClass

Gets the value of the szServiceClass property set by
BCSet_Maxi_SCM.

BCGet_Maxi_SCMCountryCode (t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code; Returns: LPCTSTR
szCountryCode

Gets the value of the szCountryCode property set by
BCSet_Maxi_SCM.

BCGet_Maxi_SCMPostalCode (t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code; Returns: LPCTSTR
szPostalCode

Gets the value of the szPostalCode property set by
BCSet_Maxi_SCM.

5.2.5 Set / Get Functions for Data Matrix

Refer to “TECBCenum.h” for possible values / enumerations.

TEC-IT Datenverarbeitung GmbH Seite: 41
www.tec-it.com

Function Description

BCSet_DM_Size (t_BarCode* const
pBarCode, e_DMSizes eSize)
pBarCode: Ptr to bar code; eSize: symbol size;
Returns: ERRCODE

Sets the size of the Data Matrix symbol

BCGet_DM_Size (t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code; Returns: e_DMSizes

Returns the actual Data Matrix symbol size.

BCSet_DM_Rectangular (t_BarCode*
const pBarCode, BOOL bRect)
pBarCode: Ptr to bar code; bRect: rectangular
(true/false); Returns: ERRCODE

Sets the symbol shape to be rectangular (true) or square (false).

BCGet_DM_ Rectangular (t_BarCode*
const pBarCode)
pBarCode: Ptr to bar code; Returns: BOOL

Returns if the symbol was set to be square (false, default) or rectangular
(true).

BCSet_DM_Format (t_BarCode* const
pBarCode, eDM_Format eFormat)
pBarCode: Ptr to bar code; eFormat: code
format; Returns: ERRCODE

Sets the code format: standard, EAN/UCC, Industry, Format 05, 06

BCGet_DM_ Format (t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code; Returns: eDMFormat

Returns if the active Data Matrix code format.

BCSet_DM_Append (t_BarCode* const
pBarCode, LONG nSum, LONG nIndex,
LONG nFileID)
pBarCode: Ptr to bar code; nSum: number of
symbols [2..16]; nIndex: index of actual symbol
[1..16]; nFileID: file id; Returns: ERRCODE

Needed for "Structured Append" (several Data Matrix items connected in
series). Sets the number of Data Matrix symbols that are used in total for
“Structured Append” and the index of the actual Data Matrix symbol within
this item chain. The file id identifies the symbol chain. If not set, no
“Structured Append“ is used.

BCGet_DM_AppendSum (t_BarCode*
const pBarCode)
pBarCode: Ptr to bar code; Returns: LONG

Gets the value of the nSum property set by BCSet_DM_Append.

BCGet_DM_AppendIndex (t_BarCode*
const pBarCode)
pBarCode: Ptr to bar code; Returns: LONG

Gets the value of the nIndex property set by BCSet_DM_Append.

BCGet_DM_AppendFileID (t_BarCode*
const pBarCode)
pBarCode: Ptr to bar code; Returns: LONG

Gets the value of the nFileID property set by BCSet_DM_Append.

5.2.6 Set / Get Functions for QR Code

Refer to “TECBCEnum.h” for possible values / enumerations.

TEC-IT Datenverarbeitung GmbH Seite: 42
www.tec-it.com

Function Description

BCSet_QR_Version (t_BarCode* const
pBarCode, e_QRVersion eVersion)
pBarCode: Ptr to bar code; eVersion: symbol
version; Returns: ERRCODE

Sets the version (=size) of the QR Code symbol

BCGet_QR_Version (t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code; Returns: e_QRVersion

Returns the actual QR Code version.

BCSet_QR_Format (t_BarCode* const
pBarCode, e_QRFormat eFormat)
pBarCode: Ptr to bar code; eFormat: symbol format;
Returns: ERRCODE

Sets the code format (standard, EAN/UCC, Industry)

BCGet_QR_Format (t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code; Returns: e_QRFormat

Returns the active QR Code format.

BCSet_QR_ECLevel (t_BarCode* const
pBarCode, e_QRECLevel eECLevel)
pBarCode: Ptr to bar code; eECLevel: error
correction level; Returns: ERRCODE

Sets the error correction level of the QR Code symbol
(L, M, Q, H)

BCGet_QR_ECLevel (t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code; Returns: e_ QRECLevel

Returns the active QR Code error correction level.

BCSet_QR_Mask (t_BarCode* const
pBarCode, e_ QRMask eMask)
pBarCode: Ptr to bar code; eMask: mask to apply;
Returns: ERRCODE

Sets the mask pattern for the QR Code symbol (0..7)

BCGet_QR_Mask (t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code; Returns: e_QRMask

Returns the applied mask.

BCSet_QR_FmtAppIndicator (t_BarCode*
const pBarCode, LPCTSTR szIndicator)
pBarCode: Ptr to bar code; szIndicator: application
indicator; Returns: ERRCODE

Sets the format application indicator. Used to define the industry
format.

BCGet_QR_FmtAppIndicator (t_BarCode*
const pBarCode)
pBarCode: Ptr to bar code; Returns: LPCTSTR

Returns the format application indicator.

BCSet_QR_Append (t_BarCode* const
pBarCode, LONG nSum, LONG nIndex,
BYTE bParity)
pBarCode: Ptr to bar code; nSum: number of
symbols [2..16]; nIndex: index of actual symbol
[1..16]; bParity: parity byte]; Returns: ERRCODE

Needed for "Structured Append" (several QR Code items connected in
series). Sets the number of QR Code symbols that are used in total for
“Structured Append” and the index of the actual QR Code symbol
within this item chain. The value for bParity has to be calculated with
BCCalcStructApp_Parity.

If these settings aren’t made, no “Structured Append“ is used.

BCGet_QR_AppendSum (t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code; Returns: LONG

Gets the value of the nSum property set by BCSet_QR_Append.

TEC-IT Datenverarbeitung GmbH Seite: 43
www.tec-it.com

BCGet_QR_AppendIndex (t_BarCode*
const pBarCode)
pBarCode: Ptr to bar code; Returns: LONG

Gets the value of the nIndex property set by BCSet_QR_Append.

BCGet_QR_AppendParity (t_BarCode*
const pBarCode)
pBarCode: Ptr to bar code; Returns: BYTE

Gets the value of the bParity property set by BCSet_QR_Append.

5.2.7 Set / Get Functions for Codablock F

Refer to “TECBCEnum.h” for possible values / enumerations.

Function Description

BCSet_CBF_Rows (t_BarCode* const
pBarCode, LONG nRows);
pBarCode: Ptr to bar code; nRows: symbol version;
Returns: ERRCODE

Sets the number of graphic rows [2..44] when using Codablock F. If not
set, the number of rows is calculated automatically (automatic mode).

BCGet_CBF_Rows (t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code; Returns: LONG

Gets the number of graphic rows (as set with BCSet_CBF_Rows).
Returns only the property value, but not the number of rows actual used
in automatic mode.

BCSet_CBF_Columns (t_BarCode* const
pBarCode, LONG nColumns);

pBarCode: Ptr to bar code; nColumns: number of
columns; Returns: ERRCODE

Sets the number of graphic columns [4...62] when using Codablock F. If
not set, the number of columns is calculated automatically (automatic
mode).

BCGet_CBF_Columns (t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code; Returns: LONG

Gets the number of graphic columns (as set with
BCSet_CBF_Columns). Returns not the number of columns actual
used in automatic mode.

BCSet_CBF_RowHeight (t_BarCode* const
pBarCode, LONG nHeight)
pBarCode: Ptr to bar code; nHeight: row height;
Returns: ERRCODE

Sets the height of a Codblock F row in [1/1000 mm]. If not set, the
height is calculated according to the bounding rectangle when drawing
(BCDraw). If set, ensure that the bounding rectangle is big enough to
avoid clipping.

BCGet_CBF_RowHeight (t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code; Returns: LONG
nHeight

Gets the value that is set by BCSet_CBF_RowHeight.

BCSet_CBF_RowSeparatorHeight
(t_BarCode* const pBarCode, LONG
nHeight)
pBarCode: Ptr to bar code; nHeight: row height;
Returns: ERRCODE

Sets the height of a Codblock F row separator in [1/1000 mm]. If not
set, the height is calculated according to the bounding rectangle when
drawing (BCDraw). If set, ensure that the bounding rectangle is big
enough to avoid clipping.

BCGet_CBF_RowSeparatorHeight
(t_BarCode* const pBarCode)
pBarCode: Ptr to bar code; Returns: LONG
nHeight

Gets the value that is set by BCSet_CBF_RowSeparatorHeight.

TEC-IT Datenverarbeitung GmbH Seite: 44
www.tec-it.com

BCSet_CBF_Format (t_BarCode* const
pBarCode, e_CBFFormat eFormat)
pBarCode: Ptr to bar code; eFormat: symbol
format; Returns: ERRCODE

Sets the code format (standard, EAN/UCC)

BCGet_CBF_Format (t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code; Returns: e_CBFFormat

Returns the active Codablock F format.

5.2.8 Methods (Drawing, Licensing…)

Function Description

BCLicenseMe (LPCTSTR lpszLicensee,
e_licKind eKindOfLicense, DWORD
dwNoOfLicenses, LPCTSTR lpszKey,
e_licProduct eProductID)
lpszLicensee: Licensee name; eKindOfLicense: kind of
license - eLicKindSingle (1), eLicKindSite (2),
eLicKindDeveloper (3); dwNoOfLicenses: number of
licenses; lpszKey: License Key (format described
beside); eProductID: Product ID - eLicProd1D (8),
eLicProd2D (9); Returns: ERRCODE (ErrOK if OK)

Licenses the TBarCode DLL with the license key to inactivate the
demo mode and to get rid off the crossbar. You receive the license
key from TEC-IT Datenverarbeitung GmbH after you have ordered
a license.

Format of lpszKey: “xxxxxxxx” or “HKLM:xxxxxxxx” (x=License
Key) registers the License-Key within the section “HK Local
Machine” of the Windows Registry (Default).

“HKCU:xxxxxxxx” (x = License Key) registers the License-Key in
the section “HKEY Current User” of the windows registry.

For Developer Licenses Format of lpszLicensee = “Mem:
xxxxxxxx” … the product is licensed until the DLL will be unloaded
from memory.

BCGetRatioString (e_BarCType eType)
eType: bar code type; Returns: LPCTSTR
lpszRatioString

Returns the default print ratio for the bar code type handled over to
the function. The function returns a string as shown in the Bar
Code Overview.

BCGetRatioHint (e_BarCType eType)
eType: bar code type; Returns: LPCTSTR lpszRatioHint

Returns the format description of the print ratio (=ratio hint) for the
bar code type handled over to the function. The function returns a
string as shown in the Bar Code Overview.

BCGetMaxLenOfData (e_BarCType eType)
eType: bar code type; Returns: LONG nMaxLen

Returns the exact number of chars that have to be in szText (Raw
Data). Returns zero if there is no specified length or an unknown
bar code type.

BCCheck (t_BarCode* const pBarCode)
pBarCode: Ptr to bar code; Returns: ERRCODE (ErrOK
if OK)

Checks bar code input data for validity.

BCCalcCD (t_BarCode* const pBarCode)
pBarCode: Ptr to bar code; Returns: ERRCODE (ErrOK
if OK)

Calculates the Check Digit.

BCCreate (t_BarCode* const pBarCode)
pBarCode: Ptr to bar code; Returns: ERRCODE (ErrOK
if OK)

Creates internal graphical bar code data structure depending on all
previous set bar code parameters.

TEC-IT Datenverarbeitung GmbH Seite: 45
www.tec-it.com

BCDraw (t_BarCode* const pBarCode, HDC
hDC, RECT* pRect)
pBarCode: Ptr to bar code; hDC: Handle of Device
Context; pRect: Ptr to bounding rectangle (a standard
windows structure); Returns: ERRCODE (ErrOK if OK)

Draws bar code into the given device context. The coordinates of
the bounding rectangle define the bar code dimensions. No special
mapping is performed.

BCGetBCList ()
Returns: LPCTSTR* lpszBarcodeArray

Returns list of implemented bar codes (returns a pointer to an
array). Use this function in connection with BCGetBCCount ().

BCGetBCCount ()
Returns: LONG nNumberOfListElements

Returns number of implemented bar code types in the bar code list
(= length of array).

BCGetCDListByType (e_BarCType eBCType)
Returns: e_CDMethod* eCDMethod

Returns list of implemented check digits (as a text array)
dependent of bar code type.

BCGetNameFromEnum (e_CDMethod
eCDMethod)
Returns: LPCTSTR lpszCDMethod

Returns name of check digit method.

BCGetCDList ()
Returns: LPCTSTR* lpszCDListArray

Returns list of implemented check digit methods (returns pointer to
array). Use this function in connection with BCGetCDCount ().

BCGetCDCount ()
Returns: LONG nNumberOfListElements

Returns size of check digit method list.

BCCopyToClipboard (t_BarCode* const
pBarCode, LONG nWidth, LONG nHeight)
pBarCode: Ptr to bar code; nWidth: width of bar code to
copy; nHeight: height of bar code to copy; Returns:
ERRCODE (ErrOK if OK)

Copies bar code into clipboard.

BCCopyToClipboardEx (t_BarCode* const
pBarCode, HDC hDC, LONG nWidth, LONG
nHeight, BOOL fTransparent, COLORREF
crBkCol, LPCTSTR szFileName)
pBarCode: Ptr to bar code definition; hDC: device context
to copy from (default: NULL); nWidth: width of barcode to
copy; nHeight: height of barcode to copy; fTransparent:
bar code transparent or not; crBkCol: background color
(only if fTransparent == FALSE); szFileName: filename
(*.EMF), that the barcode should be saved to (NULL for
no saving); Returns: ERRCODE (ErrOK if OK)

Copies bar code into clipboard with various options. You can
specify the Device Context, the transparency and the background
color of the bar code. Optional the bar code can be saved as EMF-
file (Enhanced Metafile).

BCGetCountModules (const t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code definition; Returns: DOUBLE
nNumberOfModules

Computes the number of modules in the bar code. A module is the
smallest bar/gap element of which bar codes consist of.

BCGetCountRows (const t_BarCode* const
pBarCode)
pBarCode: Ptr to bar code definition; Returns: DOUBLE
nNumberOfRows

Computes the number of rows in the bar code (for 1D / linear
symbologies = 1). Useful for 2D symbologies like PDF417 or Data
Matrix.

BCGetModuleWidth (t_BarCode* const
pBarCode, LPRECT pRect, HDC hDC, e_MUnit
eUnit)
pBarCode: Ptr to bar code definition; pRect: bounding
rectangle; hDC: Device Context Handle; eUnit: unit of
measure; Returns: DOUBLE nModuleWidth

Computes the module width for a given Device Context. You can
specify the unit, which should be used for the return value.

TEC-IT Datenverarbeitung GmbH Seite: 46
www.tec-it.com

BCGetBarcodeWidth (t_BarCode* const
pBarCode, LPRECT pRect, HDC hDC, e_MUnit
eUnit)
pBarCode: Ptr to bar code definition; pRect: bounding
rectangle; hDC: Device Context Handle; eUnit: unit of
measure; Returns: DOUBLE nBarcodeWidth

Computes the barcode width for a given Device Context. You can
specify the unit, which should be used for the return value.

BCGetBarcodeHeight (t_BarCode* const
pBarCode, LPRECT pRect, HDC hDC, e_MUnit
eUnit)
pBarCode: Ptr to bar code definition; pRect: bounding
rectangle; hDC: Device Context Handle; eUnit: unit of
measure; Returns: DOUBLE nBarcodeHeight

Computes the barcode height for a given Device Context. You can
specify the unit of the return value. Hint: use it to get the height of
a PDF417 symbol after you have modified the row height. In this
case the height of the symbol could be different from the bounding
rectangle.

BCSaveImage (t_BarCode* const pBarCode,
LPCTSTR lpszFileName, e_IMType eImageType,
LONG lXSize, LONG lYSize, LONG lXRes, LONG
lYRes)
pBarCode: Ptr to bar code definition; lpszFileName:
Filename; eImageType: Enumeration indicating the
image type saved with; lXSize, lYSize: X/Y-Size of the
image [pixel]; lXRes, lYRes: X/Y-Resolution [dpi];
Returns: ERRCODE (ErrOK if OK)

Saves the bar code to an Image File (Format Bmp, Jpg, Emf...).
The values of lXSize and lYSize should be increased, if the bar
code is not readable. The values of lXRes and lYRes can affect
printing size when printing from graphic- or painting programs. A
description of the parameter eImageType can be found later in the
section: Image types.

BCSaveImageEx (t_BarCode* const pBarCode,
HDC hDC, LPCTSTR lpszFileName, e_IMType
eImageType, LONG lQuality, LONG lXSize,
LONG lYSize, LONG lXRes, LONG lYRes)
pBarCode: Ptr to bar code definition; hDC: Device
Context Handle; lpszFileName: Filename; eImageType:
Enumeration indicating the image type; lQuality: Quality;
lXSize, lYSize: X/Y-Size of the image [pixel]; lXRes,
lYRes: X/Y-Resolution [dpi]; Returns: ERRCODE (ErrOK
if OK)

Saves the bar code to an Image File using a specific Device
Context (default = zero).

The image quality parameter sets the compression algorithm or
other parameters (depending on image type). A description of the
parameters eImageType and lQuality can be found later in the
section: Image types.

BCSaveImageToBuffer (t_BarCode* const
pBarCode, LPTSTR* lpszBuffer, e_IMType
eImageType, LONG lXSize, LONG lYSize, LONG
lXRes, LONG lYRes)
pBarCode: Ptr to bar code definition; lpszBuffer: (OUT)
Ptr to Buffer; eImageType: Enumeration indicating the
image type saved with; lXSize, lYSize: X/Y-Size of the
image [pixel]; lXRes, lYRes: X/Y-Resolution [dpi];
Returns: ERRCODE (ErrOK if OK)

Draws barcode and saves it as Image to a memory buffer (pass a
pointer variable of an arbitrary type as argument). The buffer can
be deleted with the API function GlobalFreePtr.

The values of XSize and YSize should be increased, if the bar
code is not readable or requires a high printing resolution. The
values of XRes and YRes can affect the printing size when printing
from graphic- or painting programs (but not when printing from the
browser!). A description of the parameter eImageType can be
found later in the section: Image types

The buffer will be allocated on the global heap. Get the buffer size
in Bytes with GlobalSize((HGLOBAL)GlobalHandle(szBuffer)) –
and free memory with GlobalFreePtr(…).

BCSaveImageToBufferEx (t_BarCode* const
pBarCode, HDC hDC, LPTSTR* lpszBuffer,
e_IMType eImageType, LONG lQuality, LONG
lXSize, LONG lYSize, LONG lXRes, LONG lYRes)
pBarCode: Ptr to bar code definition; hDC: Device
Context Handle; lpszBuffer: (OUT) Ptr to Buffer;
eImageType: Enumeration indicating the image type;
lQuality: Quality; lXSize, lYSize: X/Y-Size of the image
[pixel]; lXRes, lYRes: X/Y-Resolution [dpi]; Returns:
ERRCODE (ErrOK if OK)

Like above it saves the bar code into a memory buffer with a
selectable image format (pass a pointer variable of an arbitrary
type as argument). The buffer can be deleted with the API function
GlobalFreePtr. In addition you can control the device context and
the image quality (relevant for compression algorithms).

The image data format, the size [Unit defined by hDC] and the
resolution [dpi] for X and Y dimension can be set. A description of
the parameters eImageType and lQuality can be found later in the
section: Image types.

BCGetCountBars (e_BarCType eBarCType)
eBarCType: Bar Code Type; Returns: LONG lCountBars

Returns number of bar widths for the barcode type handled over
(or -1 if not successful).

TEC-IT Datenverarbeitung GmbH Seite: 47
www.tec-it.com

BCGetCountSpaces (e_BarCType eBarCType)
eBarCType: Bar Code Type; Returns: LONG
lCountSpaces

Returns number of space widths for the barcode type handled over
(or -1 if not successful).

BCGetErrorText (ERRCODE eCode, LPTSTR
szText, size_t nSize)
eCode: Error Code; szText: (IO) error text buffer; nSize:
buffer size of sztext; Returns: nothing (VOID)

Returns error text to given error code.

BCCalcStructApp_Parity (LPCTSTR szIntData,

LONG nIntData)
szIntData: input data; nIntData: size of szIntData;
Returns: BYTE

Returns the parity byte for given input stream. Used with QR code
and structured append.

BCGetQRCodeVersions ()
Returns: LPCTSTR*

Returns all possible QR versions (sizes) in an array

BCGetQRCodeVersionCount ()
Returns: LONG

Returns the number of possible versions (returned by
BCGetQRCodeVersions)

BCGetQuality (t_BarCode* const pBarCode,
HDC hDC, RECT* pRect)
pBarCode: Ptr to bar code definition; hDC: Device
Context Handle; pRect: bounding rectangle; Returns:
LONG

Returns the bar code quality in percent.
(0 .. unreadable, 100 perfect)

BCGetCheckDigits(t_BarCode* const pBarCode,
LPTSTR lpszCDText, LONG nSize);
pBarCode: Ptr to bar code definition; lpszCDText: check
digit text buffer; nSize: buffer size; Returns: LONG

Returns the calculated check digits (as ASCII values of the single
check digits).

BCSetQuietZone (t_BarCode* const pBarCode,
LPRECT const prQuietZone, e_QZMUnit
eQZMUnit);
pBarCode: Ptr to bar code definition; prQuietZone: Ptr to
rectangle that specifies quietzone; eQzMUnit: Unit for
Quietzone values (mm, Modules, mils...); Returns:
ERRCODE (ErrOK if OK)

Modules are added before and after the bar code to generate a
quiet zone.

Hint: This function isn’t fully implemented up to now.

5.2.9 Callback functions for user-defined drawing routines

BCDrawCB (t_BarCode* const pBarCode, HDC
hDC, RECT* pRect, fn_DrawBar fnDrawBar,
fn_DrawText fnDrawText, LPVOID pData)
pBarCode: Ptr to bar code; hDC: Handle of Device
Context; pRect: Ptr to bounding rectangle (a standard
windows structure); fnDrawBar callback -> drawing
bars; fnDrawText callback -> drawing text; pData
custom data to pass to call back functions; Returns:
ERRCODE (ErrOK if OK)

typedef ERRCODE (CALLBACK *fn_DrawBar)
 (VOID*, HDC, RECT*);

typedef ERRCODE (CALLBACK *fn_DrawText)
 (VOID*, HDC, LPLOGFONT, INT, INT,
 UINT, LPCTSTR, INT);

This is the callback version of the BCDraw function. The function
has to look like the declerations on the left side.

fn_DrawBar is used for drawing the bars, fn_DrawText is used for
drawing the text.

Sample code is available: support@tec-it.com

mailto:support@tec-it.com

TEC-IT Datenverarbeitung GmbH Seite: 48
www.tec-it.com

BCSetFuncDrawRow (t_BarCode* const
pBarCode, fn_DrawRow fn)

pBarCode: Ptr to bar code; fn: function pointer;
Returns: ERRCODE

Sets a callback function for drawing a single row. If the callback
function is set, it replaces the standard drawing routine. The function
has to look like the declerations on the left side.

fn_DrawRow is used for drawing one line.

Sample code is available: support@tec-it.com

BCGetFuncDrawRow (t_BarCode* const
pBarCode);
pBarCode: Ptr to bar code; Returns: fn_DrawRow

Returns the callback function that was set by BCSetFuncDawRow.

BCGetMetaData (t_BarCode* const
pBarCode);
pBarCode: Ptr to bar code; Returns: LPCTSTR

With BCGetMetaData you get access to the meta data of the current
row. The result of BCGetMetaData is only valid, when it is called in
the scope of your callback function.

mailto:support@tec-it.com

TEC-IT Datenverarbeitung GmbH Seite: 49
www.tec-it.com

6 Appendix

6.1 Bar Code Reference

6.1.1 Enumeration and Default Settings

Table heading:

Enumeration: Enumeration of the bar code type, (* = not supported or under construction)
Nr: Numbering of the bar code type (corresponds to the value defined by the enumerator)
Barcode: Name of the bar code with a short description.

Shortcuts: N = only used for numeric characters („0“..“9“), A = for alphanumeric characters
(text), S = supports additional special characters, P = suggested check digit calculation
(partially preset), 7D = 7 digits utilizable data (including leading zeros, without check digit)

Print Ratio: Standard Print Ratio of the bar code predefined corresponding to the bar code type.
Ratio Format: Format of the Ratio string, helpful to understand the definition of the Print ratio.
Check Digit: Enumeration of the preselected check digit method for each bar code.

Ratio Format:

- xB (1B, 2B, ...) width of bars
- xS (1S, 2S, ...) width of gaps (or spaces)
- red text not supported or under construction

Enumeration Nr Bar Code Name Print Ratio Default Ratio Format
(RatioHint)

Check Digit
Enumeration

eBC_None 0 Not a valid type ------- -------

eBC_Code11 1 Code 11 1:2.24:3.48:1:2.24 (1B:2B:3B:1S:2S) eCDNone

eBC_2OF5 2 Code 2 of 5 (Standard) 1:3:4.5:1:3 (1B:2B:3B:1S:2S) eCDNone

eBC_2OF5IL 3 Interleaved 2 of 5
Standard … N, P=Mod10

1:3:1:3 (1B:2B:1S:2S) eCDNone

eBC_2OF5IATA 4 Code 2 of 5 IATA 1:3:1 (1B:2B:1S) eCDNone

eBC_2OF5M 5 Code 2 of 5 Matrix … N,
P=Mod10

1:3:4.5:1:3 (1B:2B:3B:1S:2S) eCDNone

eBC_2OF5DL 6 Code 2 of 5 Data Logic 1:3:1:3 (1B:2B:1S:2S) eCDNone

eBC_2OF5IND 7 Code 2 of 5 Industrial …
N, P=Mod10

1:3:1 (1B:2B:1S) eCDNone

eBC_3OF9 8 Code 3 of 9 (Code 39) …
AS, P=Mod43

1:3:1:3 (1B:2B:1S:2S) eCDNone

TEC-IT Datenverarbeitung GmbH Seite: 50
www.tec-it.com

eBC_3OF9A 9 Code 3 of 9 (Code 39)
ASCII … AS, P=Mod43

1:3:1:3 (1B:2B:1S:2S) eCDNone

eBC_EAN8 10 EAN8 … N, 7D, P=EAN8 1:2:3:4:1:2:3:4 (1B:2B:3B:4B:1S:2S:3S:4S) eCDEAN8

eBC_EAN8P2 11 EAN8 - 2 digits add on …
N, 7D + N, 2D

1:2:3:4:1:2:3:4 (1B:2B:3B:4B:1S:2S:3S:4S) eCDEAN8

eBC_EAN8P5 12 EAN8 - 5 digits add on …
N, 7D + N, 5D

1:2:3:4:1:2:3:4 (1B:2B:3B:4B:1S:2S:3S:4S) eCDEAN8

eBC_EAN13 13 EAN13 … N, 12D,
P=EAN13

1:2:3:4:1:2:3:4 (1B:2B:3B:4B:1S:2S:3S:4S) eCDEAN13

eBC_EAN13P2 14 EAN13 - 2 digits add on
… N, 12D + N, 2D

1:2:3:4:1:2:3:4 (1B:2B:3B:4B:1S:2S:3S:4S) eCDEAN13

eBC_EAN13P5 15 EAN13 - 5 digits add on
… N, 12D + N, 5D

1:2:3:4:1:2:3:4 (1B:2B:3B:4B:1S:2S:3S:4S) eCDEAN13

eBC_EAN128 16 EAN128 (unterstützt AIS)
… AS, P=C128

1:2:3:4:1:2:3:4 (1B:2B:3B:4B:1S:2S:3S:4S) eCDCode128

eBC_UPC12 17 UPC 12 Digits … N, 12D,
P=UPCA

1:2:3:4:1:2:3:4 (1B:2B:3B:4B:1S:2S:3S:4S) eCDUPCA

eBC_CodaBar2 18 CodaBar (2 width) … NS 1:3:1:3 (1B:2B:1S:2S) eCDNone

eBC_CodaBar18* 19 CodaBar (18 widths) ------- ----

eBC_Code128 20 Code128 … AS, P=C128 1:2:3:4:1:2:3:4 (1B:2B:3B:4B:1S:2S:3S:4S) eCDCode128

eBC_DPLeit 21 Deutsche Post Leitcode 1:3:1:3 (1B:2B:1S:2S) eCDDPLeit

eBC_DPIdent 22 Deutsche Post Identcode 1:3:1:3 (1B:2B:1S:2S) eCDDPIdent

eBC_Code16K* 23 Code 16K ------- ----

eBC_49* 24 Code 49 ------- ----

eBC_9OF3 25 Code 93 … AS,
P=Mod47

1:2:3:4:1:2:3:4 (1B:2B:3B:4B:1S:2S:3S:4S) eCD2Mod47

eBC_UPC25 26 Identical to eBC_UPCA ------- ----

eBC_UPCD1* 27 UPCD1 ------- ----

eBC_UPCD2* 28 UPCD2 ------- ----

eBC_RSS14 29 RSS-14 1:2:3:4:5:6:7:8:9:1:2:3:4
:5:6:7:8:9

(1B:2B:3B:4B:5B:6B:7B:8B:
9B:1S:2S:3S:4S:5S:6S:7S:8
S:9S)

eCDNone

eBC_RSSLtd* 30 RSS Limited ------- ----

eBC_RSSExp* 31 RSS Expanded ------- ----

eBC_UPCSCC* 32 UPCD6 ------- ----

eBC_UCC128 33 UCC128 (= EAN128) ------- ----

eBC_UPCA 34 UPC A … N, 11D 1:2:3:4:1:2:3:4 (1B:2B:3B:4B:1S:2S:3S:4S) eCDUPCA

TEC-IT Datenverarbeitung GmbH Seite: 51
www.tec-it.com

eBC_UPCAP2 35 UPC A – 2 digit add on …
N, 11D + N, 2D

1:2:3:4:1:2:3:4 (1B:2B:3B:4B:1S:2S:3S:4S) eCDUPCA

eBC_UPCAP5 36 UPC A – 5 digit add on …
N, 11D + N, 5D

1:2:3:4:1:2:3:4 (1B:2B:3B:4B:1S:2S:3S:4S) eCDUPCA

eBC_UPCE 37 UPC E … N, 7D 1:2:3:4:1:2:3:4 (1B:2B:3B:4B:1S:2S:3S:4S) eCDUPCE

eBC_UPCEP2 38 UPC E – 2 digit add on …
N, 7D + N, 2D

1:2:3:4:1:2:3:4 (1B:2B:3B:4B:1S:2S:3S:4S) eCDUPCE

eBC_UPCEP5 39 UPC E – 5 digit add on …
N, 7D + N, 5D

1:2:3:4:1:2:3:4 (1B:2B:3B:4B:1S:2S:3S:4S) eCDUPCE

eBC_PostNet5 40 PostNet ZIP (5d.) ... N,
5D

1:1 (1B:1S) eCDPostNet

eBC_PostNet6 41 PostNet ZIP (5d.+CD) ...
N, 5D

1:1 (1B:1S) eCDPostNet

eBC_PostNet8 42 PostNet ZIP (8d.) ... N,
8D

1:1 (1B:1S) eCDNone

eBC_PostNet10 43 PostNet ZIP+4
(5d.+4d.+CD) ... N, 9D

1:1 (1B:1S) eCDPostNet

eBC_PostNet11 44 PostNet DPBC
(5d.+4d.+2d.) … N, 11D

1:1 (1B:1S) eCDPostNet

eBC_PostNet12 45 PostNet DPBC
(5d.+4d.+2d.+CD) … N,
11D

1:1 (1B:1S) eCDPostNet

eBC_Plessey 46 Plessey Code … N,
P=Pless

1:2:1:2 (1B:2B:1S:2S) eCDPlessey

eBC_MSI 47 MSI Code … N, P=MSI1 1:2:1:2 (1B:2B:1S:2S) eCDMSI1

eBC_SSCC18 48 SSCC18 1:2:3:4:1:2:3:4 (1B:2B:3B:4B:1S:2S:3S:4S
)

eCDNone

eBC_FIM* 49 FIM ------- ----

eBC_LOGMARS 50 LOGMARS … AS (Mil-
Std-1189B: P=Mod43)

1:3:1:3 (1B:2B:1S:2S) eCDNone

eBC_Pharma1 51 Pharmacode One-Track 1:3:2:4:2:3 1B:2B:1C:2C:1S:2S eCDNone

eBC_PZN 52 Pharmazentralnummer 1:2.5:1:2.5 (1B:2B:1S:2S) eCDPZN

eBC_Pharma2 53 Pharmacode Two-Track 1:1 1B:1S eCDNone

eBC_GP* 54 GP ------- ----

eBC_PDF417 55 PDF417 … 2D Barcode,
AS

1:2:3:4:5:6:7:8:
1:2:3:4:5:6

(1B:2B:3B:4B:5B:6B:7B:8B:
1S:2S:3S:4S:5S:6S)

eCDNone

eBC_PDF417Trunc 56 PDF417 Truncated … 2D
Barcode, AS

1:2:3:4:5:6:7:8:
1:2:3:4:5:6

(1B:2B:3B:4B:5B:6B:7B:8B:
1S:2S:3S:4S:5S:6S)

eCDNone

eBC_MAXICODE 57 MaxiCode … 2D-
Barcode, AS

1:1 eCDNone

eBC_QRCODE 58 QR-Code 1:1 eCDNone

TEC-IT Datenverarbeitung GmbH Seite: 52
www.tec-it.com

eBC_Code128A 59 Code128 (CharSet A) …
AS

1:2:3:4:1:2:3:4 (1B:2B:3B:4B:1S:2S:3S:4S) eCDCode128

eBC_Code128B 60 Code128 (CharSet B) …
ASCII, AS

1:2:3:4:1:2:3:4 (1B:2B:3B:4B:1S:2S:3S:4S) eCDCode128

eBC_Code128C 61 Code128 (CharSet C) …
AS

1:2:3:4:1:2:3:4 (1B:2B:3B:4B:1S:2S:3S:4S) eCDCode128

eBC_9OF3A 62 Code 93 Ascii … AS.
P=M47

1:2:3:4:1:2:3:4 (1B:2B:3B:4B:1S:2S:3S:4S) eCD2Mod47

eBC_AusPostCustom 63 Australian Post Standard
Customer

1:1 (1B:1S) eCDNone

eBC_AusPostCustom2 64 Australian Post Customer
2

1:1 (1B:1S) eCDNone

eBC_AusPostCustom3 65 Australian Post Customer
3

1:1 (1B:1S) eCDNone

eBC_AusPostReplyPaid 66 Australian Post Reply
Paid

1:1 (1B:1S) eCDNone

eBC_AusPostRouting 67 Australian Post Routing 1:1 (1B:1S) eCDNone

eBC_AusPostRedirect 68 Australian Post
Redirection

1:1 (1B:1S) eCDNone

eBC_ISBN 69 ISBN Code (=EAN13P5) 1:2:3:4:1:2:3:4 (1B:2B:3B:4B:1S:2S:3S:4S) eCDEAN13

eBC_RM4SCC 70 Royal Mail 4 State
(RM4SCC)

1:1 (1B:1S) ECDNone

eBC_DataMatrix 71 Data Matrix 1:1 ECDNone

eBC_EAN14 72 EAN-14 1:2:3:4:1:2:3:4 (1B:2B:3B:4B:1S:2S:3S:4S) eCDNone

eBC_CODABLOCK_F 74 Codablock-F 1:2:3:4:1:2:3:4 (1B:2B:3B:4B:1S:2S:3S:4S) eCDNone

eBC_NVE18 75 NVE-18 1:2:3:4:1:2:3:4 (1B:2B:3B:4B:1S:2S:3S:4S) ECDNone

eBC_JapanesePostal 76 Japanese Postal… NAS,
P=Mod19

1:1 (1B:1S) eCDNone

eBC_KoreanPostalAuth 77 Korean Postal Authority…
N, 6D, P=Mod10

1:3:4 (1B:1S:2S) eCDMod10Kor

eBC_RSS14Trunc 78 RSS-14 Truncated 1:2:3:4:5:6:7:8:9:1:2:3:4
:5:6:7:8:9

("1B:2B:3B:4B:5B:6B:7B:8B
:9B:1S:2S:3S:4S:5S:6S:7S:
8S:9S")

eCDNone

eBC_RSS14Stacked 79 RSS-14 Stacked 1:2:3:4:5:6:7:8:9:1:2:3:4
:5:6:7:8:9

("1B:2B:3B:4B:5B:6B:7B:8B
:9B:1S:2S:3S:4S:5S:6S:7S:
8S:9S")

eCDNone

eBC_RSS14StackedO
mni

80 RSS-14 Stacked Omnidir 1:2:3:4:5:6:7:8:9:1:2:3:4
:5:6:7:8:9

("1B:2B:3B:4B:5B:6B:7B:8B
:9B:1S:2S:3S:4S:5S:6S:7S:
8S:9S")

eCDNone

eBC_RSSExpStacked 81 RSS Expanded Stacked 1:2:3:4:5:6:7:8:9:1:2:3:4
:5:6:7:8:9

("1B:2B:3B:4B:5B:6B:7B:8B
:9B:1S:2S:3S:4S:5S:6S:7S:
8S:9S")

eCDNone

TEC-IT Datenverarbeitung GmbH Seite: 53
www.tec-it.com

eBC_Planet12 82 PLANET 12 digit 1:1 ("1B:1S") eCDNone

eBC_Planet14 83 PLANET 14 digit 1:1 ("1B:1S") eCDNone

6.1.2 Related Bar Code Symbologies

 Code 128 is the basis for these specifications: USS Code 128, UCC-128, ISBT-128, EAN-128, EAN-14,
SSCC-18 und SCC-14.

 ITF-14 is based upon Interleaved 2 of 5 Standard, but with 14 digits.
 ISBN is based upon EAN13P5.

6.2 Parameter

6.2.1 Check Digit Enumeration

The method for the check digit(s) calculation depends on the respective bar code type. In order to make the
ActiveX Control as user-friendly as possible, a standard method for each bar code type is supplied.

The bar code types EAN 8/13, UPC A/E and Postnet 6/10/12 are to mention particularly. When selecting the
standard check digit the input can take place with and without check digit. In the latter case the check digit is
calculated automatically and added.

Example EAN13: 12 digits input (= utilizable data), the 13th Digit (= check digit) is added automatically.

Enumeration Nr Check digit calculation method

ECDNone 0 No check digit calculation, no check digit added

ECDStandard 1 The preset method of each bar code type will be used (that means also,
that for some types no check digit is applied)

ECDMod10 2 Modulo 10

ECDMod43 3 Modulo 43 (suggested for Code39 and Logmars, consist of 1 digit)

eCD2Mod47 4 Modulo 47 (2 check digits)

ECDDPLeit 5 Methode for Deutsche Post Leitcode

ECDDPIdent 6 Method for Deutsche Post Identcode

eCD1Code11 7 Method for Code 11 (1 check digit)

eCD2Code11 8 Method for Code 11 (2 check digits)

eCDPostnet 9 Method for USPS Postnet

eCDMSI1 10 Method for MSI (1 digit)

eCDMSI2 11 Method for MSI (2 digits)

eCDPlessey 12 Method for Plessey

TEC-IT Datenverarbeitung GmbH Seite: 54
www.tec-it.com

eCDEAN8 13 Method for EAN 8

eCDEAN13 14 Method for EAN 13

eCDUPCA 15 Method for UPC A

eCDUPCE 16 Method for UPC E

eCDEAN128 17 Method for EAN 128

eCDCode128 18 Method for Code 128

ECDRM4SCC 19 Method for Royal Mail 4 State

eCDMod10Kor 20 Modulo 10 for Korean PA bar code

eCDPZN 21 Mod-11 (PZN)

eCDMod11W7 22 Mod-11 (W=7)

eCDEAN14 23 EAN 14

eCDMod10Kor 24 Mod-10 (Korean Postal)

eCDMod10Pla 25 Mod-10 (PLANET)

6.2.2 Ratio, RatioHint (Ratio Format)

The Print Ratio is the relationship between the widths of the bars and gaps of a bar code. The ratio format
(evident in the property RatioHint) depends on the selected type of bar code and shows, how many different
bar- and gap-widths are used. The width of a bar (or gap) is calculated using the indicated Print Ratio and
the (calculated or specified) module width (depending on the actual amount of utilizable data).

If no Ratio is indicated, the standard Ratio (refer to Barcode Overview, Enumerators) is used

(1B:1S) 1 bar, 1 gap
(1B:2B:1S:2S) 2 bars (1B ... narrow, 2B ... wide), 2 gaps
(1B:2B:3B:1S:2S) 3 bars, 2 gaps

Examples:

RatioHint (Format) Ratio Result

(1B:1S) 1:1 Same width is used for bars and spaces (gaps)

(1B:2B:1S:2S) 1:2:1:2.4 The print ratio of the wide bars (2B) to the small bars (1B) is specified as 2 :
1

The print ratio of the wide spaces (2S) to the small spaces (1S) is specified
as 2.4 : 1

(1B:2B:3B:1S:2S) 1:2.5:4:1:2 There are three bar widths (1B, 2B, 3B) with the ratio 4 : 2.5 : 1
and 2 space widths with the ratio 2 : 1

TEC-IT Datenverarbeitung GmbH Seite: 55
www.tec-it.com

6.2.3 Format

Format is used for formatting the bar code data prior to printing it (please do not mix up the Format with the
Ratio Format).

Placeholders in the format string can be mixed with constant data characters to build a final bar code data
string. Also control characters are supported. With this feature it’s possible to:

- Select subsets in Code 128, EAN 128 and UCC 128 (even within the code!)
- Select the required start/stop character for CODABAR
- Change the position of the check digit (for special applications only)
- Set the values of Date, Preamble, Service Class, postal and country code directly in the

barcode data (in conjunction with special Esc-sequences)

The placeholders are as follows:

Placeholder
character Description

Stands for the next data character

& Stands for all remaining data characters

^ Stands for the next check digit (use only if check digits will be
computed!)

A Switch to Subset A (used in: Code 128, EAN 128, UCC 128)

B Switch to Subset B (used in: Code 128, EAN 128, UCC 128)

C Switch to Subset C (used in: Code 128, EAN 128, UCC 128)

A Start- or stop character A (only in: CODABAR)

B Start- or stop character B (only in: CODABAR)

C Start- or stop character C (only in: CODABAR)

D Start- or stop character D (only in: CODABAR)

S Only for MaxiCode: enables setting the values of Date, Preamble,
Service Class, Postal- and Country- Code directly in the barcode data
(in conjunction with predefined Esc-sequences – refer to Setting SCM
parameters)

J For Japanese Postal Code can be an automatically conversion of the
Address B data field, that means that Japanese characters will be
changed into ASCII characters. Look at #Japanese Postal (Customer)
Code.

Examples:

TEC-IT Datenverarbeitung GmbH Seite: 56
www.tec-it.com

Data input Barcode type Format string Final bar code data
used as content

123 Irrelevant 123

123 Irrelevant 5& 5123

123 Irrelevant &6 1236

123 Irrelevant Q#w#e# q1w2e3

123 Irrelevant #q& 1q23

123 Irrelevant &^ 123c

123 Irrelevant ^& c123

Hello Code 128 A& Hello

Hello Code 128 A##B& Hello

Hello4711 Code 128 A##B& Hello4711

Hello4711 Code 128 A##B###C& Hello4711

red characters represented in Subset A

gray characters represented in Subset B

green characters represented in Subset C

c presents the place of the check digit

6.2.4 ESC Sequences and Control Characters

If you want to use non-printable or special characters in your bar code, you have to use “Escape
Sequences”. They always start with a backslash (‘\’) followed by the sequence. You can use them also for
encoding binary data (Bytes) into your bar code (if the symbology you are using offers this feature – e. g.
PDF417 or Data Matrix).

Implemented Escape Sequences:

Esc-
Sequence Description

\a Bell (alert)

\b Backspace

\f Form feed

\n New Line

\r Carriage Return

\t Horizontal Tab

\v Vertical Tab

TEC-IT Datenverarbeitung GmbH Seite: 57
www.tec-it.com

\\ The Backslash \ itself

\0ooo ASCII-character in octal notation

\ddd ASCII-character in decimal notation

\xhh ASCII-character in hexadecimal notation

\F FNC1 or Gs (\x1d), used in UCC/EAN codes as field
separator

\E ECI (Extended Character Interpretation), used in 2D codes
like MaxiCode, Data Matrix and QR Code. Is used for
switching between various code pages (multiple character
sets) – contact us to get further information.

\EB, \EE special ECI identifiers for nesting ECIs. \EB (ECI Begin)
opens a nesting level, \EE (ECI End) closes it. Used in QR
Code

\G GLI (Global Language Identifier), similar to ECI, but only
used in PDF417.

ooo octal digits (0..7)
ddd decimal digits (0..9)
hh hexadecimal digits (0..F)

Following table shows a list of control characters, their escape sequences and in which symbology they may
be used. The usage of escape sequences is code dependent and differs in different symbolgies. It is
recommended to use named escape sequences if they are available (e.g. \F instead of FNC1 or Gs –
dependent on the used symbology).

Control
character

Escape
sequence Barcode type(s)

FNC1 \210 Code 128, EAN128, UCC128, 2D
Codes

FNC2 \211 Code 128, EAN128, UCC128

FNC3 \212 Code 128, EAN128, UCC128

FNC4 \213 Code 128, EAN128, UCC128

DC1 \x11 Code93, Code93Ext

DC2 \x12 Code93, Code93Ext

DC3 \x13 Code93, Code93Ext

DC4 \x14 Code93, Code93Ext

Rs \x1E MaxiCode (Mode 3,4 SCM)

Gs \x1D MaxiCode (Mode 3,4 SCM)

Eot \x04 MaxiCode (Mode 3,4 SCM)

You have to switch the object property “Esc Sequences” to “On” in order to use them. Please keep in mind,
that when “translate escape sequences” is enabled, you cannot code a backslash (“\”) directly. Use “\\”
instead.

6.2.5 Application Identifier

An Application Identifier is a prefix used to identify the meaning and the format of the data that follows
it (data field).
AIs have been defined for identification, traceability data, dates, quantity, measurements, locations,
and many other types of information. The data presented can be alphanumeric or numeric and with
fixed and variable data length.
You don’t have to encode the brackets, which defines the AI’s. TBarCode ActiveX/DLL includes the
brackets automatically.
With EAN128 you are able to run more than one AI together. If one field has a variable length and you
don’t use the whole number of characters you have to divide the data fields with the “\F” ESC
sequence (you have to switch the object property “Esc Sequences” to “On” in order to encode “\F”)

Hint: Don’t use the “\F” after the last data field.

Please use the link below to get a list of all available AI’s :

http://www.ean.com.au/media/FILES/web_site/download_centre/eanapp_idents.pdf

Examples:

- Batch number:
The AI 10 is used to encode a batch number. The format of this AI is n2 + an..20.
This means the AI (10) is followed by a data field with variable length (max. 20 characters).

Data: 10 + batch-number= 1012345678
Human readable text: (10)12345678
Encoded data: 1012345678

- Using more AI’s within one bar code:

There are two data fields encoded in one bar code. Following fields are used:

Batch number AI (10) - format: n2 + an..20
Item number AI (01) - format: n14

Data: 10 + batch-number + \F + 01 + item-number
Human readable text: (10)12345678(01)12345678901234
Encoded data: 10123456780112345678901234

 „\F“ is used because the batch number (max. 20 characters) only needs 8 characters.

TEC-IT Datenverarbeitung GmbH Seite: 58
www.tec-it.com

http://www.ean.com.au/media/FILES/web_site/download_centre/eanapp_idents.pdf

6.3 MaxiCode

6.3.1 Extended Documentation
For MaxiCode we provide an extended documentation.
Download it from: http://www.tec-it.com/Download (Documentation)

6.3.2 Setting SCM parameters

The parameters for SCM (Structured Carrier Message - used for UPS purposes) can be set directly in the
bar code data. This allows complete control of all necessary parameters e.g. from a database without
additional coding.
The values for the properties postal code, country code, service class, preamble and date are extracted from
the bar code data (text property) and the values of the belonging properties are overdriven.
Necessary settings:
The Format property must be set to "S" (switches extracting of SCM Data to “on”).
The Text property should contain the whole text according to UPS standard including preamble, date, postal
code, and country code and service class. Special characters and separators must be replaced by Esc-
sequences (refer to ESC Sequences).

Control
character

Escape
sequence

Rs \x1e

Gs \x1d

Eot \x04

6.4 Japanese Postal (Customer) Code
For this bar code type we support two different ways of data input (without and with data extraction from
Japanese AddressB field).

A) Direct Encoding Mode
Format Property = “” (default=empty)
Postal code = 2730102 (no hyphen ‘-‘)
Address B = 3-20-5B604
Bar code text = Postal code + Address B (no space between)
Bar code text = 27301023-20-5B604
Encoded data in the symbol: 27301023-20-5B604

B) Japanese Extraction Mode
Format Property =”J” (=Japanese)
Postal code = 273-0102 (can contain ‘-‘)
Address B =
Bar code text* = Postal code + Address B
Bar code text* = 273-0102
Encoded data in the symbol = 27301023-20-5B604 (after internal conversion)

TEC-IT Datenverarbeitung GmbH Seite: 59

www.tec-it.com

http://www.tec-it.com/Download

TEC-IT Datenverarbeitung GmbH Seite: 60
www.tec-it.com

* in TBarCode DLL provide input data in Japanese SHIFT JIS (MultiByte) char set (Codepage 932), use BCSetText
function to pass MB string. In TBarCode ActiveX, select InterpretInputAs = Japanese Shift JIS

Standard Dimensions
To meet the dimension specification:

• set the module width to 0.6mm
DLL API: BCSetModWidth (pBC, "600")

• set the bounding rect in the draw function
to a height of 3.6 mm

• switch off displayment of the human readable text

6.5 Korean Postal Authority Code

Example:
Post Number = 305-600
Barcode Text Property = 305600 (no hyphen, 6 digits)
Encoded data in the symbol = 0065036

The check digit (7th digit) is calculated automatically.

TEC-IT Datenverarbeitung GmbH Seite: 61
www.tec-it.com

6.6 Error Codes
The following table lists all error codes that can be returned by TBarCode. The error codes and error
messages are contained in the properties LastErrorNo and LastError.

Error code (0x=Hex) Description

0x00000000 Err OK = No Error

0x80004001 Not implemented bar code type

0x80070057 Unsupported bar code or syntax error

0x8007000D Wrong character

0x80090004 Wrong number of input characters

0x8007007A Input string too long

0x80040140 Barcode does not fit into bounding rectangle

0x800710d2 No input characters

For example: In Visual Basic you can ask for a specific error code by using the following statement: „IF
objBarcode.LastErrorNo = &H80070057 … “.

6.7 Image Types
Applying the methods SaveImage and ConvertToStream to the object, the bar code can be converted to a
bitmap or image format. Therefore the following image types with the corresponding compression options
(parameter nQuality) are available. Please keep in mind that unreadable bar codes may be produced when
creating a bitmap with low resolution.

6.7.1 Image Data Format

Image format Enumeration (def. value) Note

BMP eIMBmp (0)

EMF eIMEmf (1) In ConvertToStream and ConvertToStreamEx not supported

EPS (Bitmap) eIMEps (2) In ConvertToStream and ConvertToStreamEx not supported

GIF eIMGif (3) Not supported because of license terms – contact us if you need
more information

JPG eIMJpg (4)

PCX eIMPcx (5) In ConvertToStream and ConvertToStreamEx not supported

PNG eIMPng (6)

TIF eIMTif (7)

EPS (Vector) eIMPsVector (8) In ConvertToStream and ConvertToStreamEx not supported

TEC-IT Datenverarbeitung GmbH Seite: 62
www.tec-it.com

6.7.2 Compression Modes

Image
format

Compression / nQuality Remark

BMP 0..1, 0 = uncompressed, 1 = compressed

EMF Bitmap EPS: Not used

Vector EPS: substitute w. device fonts: 0, 1

With vector EPS files you can choose between using
Windows fonts (0) and using Postscript compatible fonts
(1).

EPS Not used Not implemented

JPG 0..100, 0=highest compression, worst quality, 100
=lowest compression, best quality

Value of 100 suggested, especially for high data density

PCX Not used In ConvertToStream and ConvertToStreamEx not
supported

PNG PNGALLFILTERS (0) -> use best filter for each row
(highest compression)

PNGINTERLACE (1) -> Interlace filter

PNGNOFILTER (2) -> no filter will be used (fastest
runtime)

PNGSUBFILTER (4) -> Difference filter with adjacent
pixel

PNGUPFILTER (6) -> Difference filter with pixel from
the previous row

PNGAVGFILTER (8) -> Average filter

PNGPAETHFILTER (10) -> Paeth filter

To save an image in compressed mode and additional
as interlaced file, you have to make a bit wise or
operation with the defined constants (or simple adding
the numbers).

Example: to save a file with maximum compression and
interlaced, the quality parameter is calculated as
follows:

PNGALLFILTERS | PNGINTERLACE

TIF 0.. No compression

1.. LZW (not supported)

2.. Packbits compression

3.. Group 3

4.. Group 4

LZW compression is not supported because of license
terms – contact us if you need more information.

6.7.3 Resolution and Readability

Producing a bar code using Images or Bitmaps can decrease the bar code quality and cause problems with
scanning - but for web applications it is inevitable to use bitmaps.

Background: the bar code must be converted from its internal resolution (high) to a graphic pixel resolution
(low). In this process it can happen that the module width varies due to rounding errors or that bar code
modules are truncated if the resolution is too small.

This is a general problem when using bitmap formats with a limited resolution (BMP, JPG, PNG) in contrast
to vector based formats (e.g. EMF).

For web applications: please download the ASP and PHP sample code from our sample download area
(http://www.tec-it.com/download). This code will help you to produce optimized bar codes.

http://www.tec-it.com/download

TEC-IT Datenverarbeitung GmbH Seite: 63
www.tec-it.com

The following workarounds are suitable to minimize graphical errors when reproducing the bar code through
a bitmap:

General:

1. Enlarge the resolution – use significantly higher values for XSize and YSize. This should avoid
readability and scanning problems in most cases.

2. Especially when using Code128 or other codes with high optical density you have to choose an
essential higher resolution.

3. Don’t use any compression reducing the picture quality.
4. Use multiple bar code symbols for higher data contents – try to reduce the optical density of the

single codes symbols.
5. Use the new property “OptResolution” to adapt the module width to the pixel resolution.

Workarounds:

1. Set the property “OptResolution” = true – this can fix reading problems for low output resolutions.

2. A module width set to a specific fixed value can also prevent scanning problems - however not in

each case. In order to represent the max. Data capacity it must be ensured that the bar code object
is drawn wide enough (XSize must be large enough). In screen resolution (96dpi) 1 pixel would be
0,2646 mm large. With "obj.ModulWidth = 265" the module width is adjusted to approximately 1 pixel
(in 1/1000 mm).
If possible at least 2 pixels should be used for representing a single module (obj.ModulWidth = 529).
These values are OK, if the device context is adjusted for 96 dpi screen resolution (like in most
cases).

3. CountModules: the barcode property „CountModules“ helps substantially to cope with readability

problems using bitmaps. It gives you the number of bar code modules needed to encode the
utilizable data. A module is the smallest graphical element (segment) of which a bar code consists
of. If the width of the bar code (= XSize [pixels]) output image equals the number of bar code
modules (=CountModules), then many problems fall away: no matrix effects, no rounding errors, no
module width variations, etc.
This procedure works for Web Applications (ConvertToStream method) as well as for storing image
files (SaveImage). With such a setting it is achieved that the module width becomes exactly 1 pixel
wide.
If you need wider bar codes, then select a multiple of CountModules, e.g. XSize =
Barcode.CountModules * 2 for the width of the bar code image. This procedure guarantees optimal
readability for all bar codes, with integer based print ratios (referring to the reference table actually all
but Code11). This workaround is ideal in particular if the bar code is not bound to fixed values in its
dimensions.

4. Within HTML: in order to increase printing resolution you can produce the barcode with twice or

triple resolution as used in the browser window. Within the HTML-code at client side it would look
like . However, the barcode is produced
with twice resolution like: XSize=500 Px and YSize=120 Px (using SaveImage or ConvertToStream).
Use a larger font size (property font) to make the text look normal. To avoid big file sizes you could
double only the horizontal but not the vertical resolution. A distorted font can be avoided: switch the
font in the barcode off and print the text separately using HTML.

5. Possible combinations: Workaround 1 should solve most problems. But Workaround 2 and 4 for

increasing the bitmap resolution is possible (e.g. ModuleWidth = 0.2 mm * 5 = 1000, XSize = [width
in Pixels at max. data content] * 5, XRes = [127dpi] * 5). Workaround 2 and 3 cannot be combined.

TEC-IT Datenverarbeitung GmbH Seite: 64
www.tec-it.com

Printing Resolution:
With BMP files the resolution of the image (dpi) cannot be adjusted, as default a value of 72 dpi is used (the
values of the parameters nXRes, nYRes used with SaveImage / ConvertToStream are ignored).
With JPG (and EMF) a resolution for printing can be specified - the size of the printed bar code can be
adapted thereby. The resolution should be selected in such a way that the bar code remains readable by the
scanner. When using a module width of 1 pixel the highest printing resolution should be 127 dpi (module
width = 0.2 mm). Using 2 pixels 254 dpi, etc. Also the maximum resolution of the printing device should be
considered. With Web applications consider the fact that the browser ignores the resolution (dpi) of the JPG
image but adapts the bar code size according to the screen representation.

PDF417 and images (e. g. used in web-applications):
To get a proper image (without matrix effects) you have to calculate the Xsize and YSize of the image by
using the properties CountModules and CountRows. To get the XSize use the value of CountModules
divided by the value of CountRows. Use a multiple of the value of CountRows to get a proper YSize.

VB-Sample for calculating the XSize and YSize values used for SaveImage or ConvertToStream (for
PDF417):

TBarCode.Text = BarCodeData

Numrows = TBarCode.CountRows

nXSize = TBarCode.CountModules / Numrows

nYSize = Numrows * 5

TEC-IT Datenverarbeitung GmbH Seite: 65
www.tec-it.com

7 FAQ’s
If these FAQ’s don’t fit to your problem - check our website http://www.tec-it.com/FAQ or contact our support
team directly: mailto:barcode@tec-it.com.

7.1.1 How to add the leading and trailing ‘*’ for Code 39?

No action is required. The ‘*’s are added automatically to the barcode.

7.1.2 How to add the check digit to Code 39?

Simply select Modulo 43 as Check-Digit Method. The automatically computed check-digit is appended at
the end of the bar code.

7.1.3 How can I add bar codes to a mail merge document?

In our samples download area we have a Word Macro, which provides the functionality for adding bar codes
to a mail merge document.

The Word Macro "Barcodeseries" is contained in a dot file, which must be included to the mail merge
document.
You can download the Macro with a detailled description and a sample, which shows how it works.

Download:
http://www.tec-it.com/download/samples

Designing the mail merge template:
You need a bar code object in the template (insert TBarCode ActiveX and adjust the bar code parameters as
desired for your bar code). In the mail merge template, the bar code data must be placed in a paragraph
directly before the bar code object.

Start the mail merge:
The mail merge target must be a new document (not the printer).

Process all bar codes: After merging into a new document, start the Word Macro "BarcodeSeries".
It copies the text paragraph before the TBarCode Object into the bar code object.

Then print.

Hint: Macros must be enabled in Word 2000 (check out [Tools] [Macro] [Security...]).

http://www.tec-it.com/FAQ
mailto:barcode@tec-it.com
http://www.tec-it.com/download/samples

TEC-IT Datenverarbeitung GmbH Seite: 66
www.tec-it.com

7.1.4 How can I determine the number of PDF417 Code Words?

After BCCreate(..)

long cm = BCGetCountModules(pbarCode);
long cr = BCGetCountRows(pbarCode);

long width = cm/cr;
long height = cr * 5; // not smaller than cr * 3 !!!

The number of non-data modules per row depends on whether the PDF417 symbol is truncated or not.

long lNumNonDataModulesPerRow = 69; //(eBCType == eBC_PDF417) ? 69 : 52;

Determine the number of data code words to encode. This is only a rough estimate due because there is
no TBarcode DLL function that returns this information. The estimated will be based on the total number
of code words and total number of rows, as indicated by the TBarcode DLL.

long lNumDataCodeWords = (cm - cr*lNumNonDataModulesPerRow)/17;

7.1.5 How to add the leading and trailing ‘A’ (or B or C or D) for CODABAR?

Enter A&A in the Format string (& is a placeholder for the barcode raw data).

7.1.6 How can I change the module width to 15 mils in my web application (ASP) ?

Our component allows setting the module width in 0.001 mms steps (e.g. 15 mils = 0.381 mm) but during
conversion of the bar code to an image file (ConvertToStream) it will be rasterized in a raster of 96 dpi.
After this process one module (smallest bar element) can only be 1 or a multiple of 1 Pixel:
that is 1/96 dpi = 0.0104 = 10 mils (or twice/triple/… of 10 mils). It can’t be 15 mils because 1 and a half
pixel is not possible in an image raster format.

For web applications where the bar code is displayed in the browser we have two parameters, which
influence size and quality.

• The width [Pixels] of the created bar code image influences the quality (because it influences the
width of the modules).

• The width [Pixels] of the image tag in the browser influences the displayed and printed width.

TEC-IT Datenverarbeitung GmbH Seite: 67
www.tec-it.com

Example:

In your ASP code you could create the barcode with 600 pixel width:

• binStream = ConvertToStream (600, 150 ...)

But you can display it in the browser window 196 Pixels wide.

• <img src="<%="barcode.asp?" & URLPARAM%>" width="196" height="48">

 The created image (600 Px) will be shrinked down to 196 Pixels by the browser.

It is not a good idea to create the bar code always the same width (like in our example 600 Pixels) if the
data to be encoded can change. You may need more or less modules (bars...) in a bar code with varying
data content.

 So in our ASP sample code we suggest to always calculate the number of modules before to assign
the width.

Solution:

The only way to get 15 mils module width would be to adjust the symbol size by the img tag in html.

• Use our sample code, which uses the CountModules method for getting the correct width in
Pixels for creating the bar code.

• Then “fine-tune” the bar code size with the image tag width parameter. By fine-tuning the bar
code size using the image tag you also influence the module width (smallest bar width) of the
symbol.

We can help you getting the correct width for the image tag if you send us sample data, desired bar code
type and the valid module width range (mailto:support@tec-it.com). You could find out the optimum width
by your own using our Barcode Studio Software, which is downloadable from http://www.tecit.com

7.1.7 How to use a specific subset in Code 128?

Use the corresponding bar code types Code128A, 128B or 128C. The whole code will then be generated
in the corresponding subset. If you want to change the subset within the bar code enter A or B or C in
the format string (please refer to References/ Format).

7.1.8 How to use the compressed mode of Code 128?

Clear the Format string. If this field is empty (default) the code will be generated in the subsets that will
produce the shortest representation.

http://www.tecit.com/

TEC-IT Datenverarbeitung GmbH Seite: 68
www.tec-it.com

7.1.9 How can I get a PDF417 symbol with standard aspect ratio (3:2) ?
1)
Set a Row:Col Ratio of 11:1

e.g.

Set Cols = 2
Set Rows = Cols * 11

2)
Make a constant ratio of row height: module width

 Set a row height: module width ratio of 3:1 (default)
Set module width = 500 (0.5 mm constant value)
Set PDF row height = 1500 (1.5)

Result: You will get a standard PDF417 symbol with standard aspect ratio of 3:2

7.1.10 How to license the product from within my application?

Assume you got the following license key:

Product ID: 13 (1D Barcodes)

Licensee: Barcode Inc.
License Kind: 2 (Site)
Licenses: 1
License-Key: 12A3B5C6

Now implement a call to the method LicenceMe before you draw a bar code (we suppose at startup of
your application).

Example in Visual Basic (enumerators are used):

TbarCode41.LicenseMe "Barcode Inc.", eLicKindSite, 1, "12A3B5C6",
eLicProd1D

Syntax: [object name].LicenseMe ["Name of licensee"], [license type (1=single,2=site or 3=dev)], [number of licenses (=1)],
["license key"], [product id (13=1D, 14=2D)]

Product ID is depending on program version (see your license email).

7.1.11 How to use Application Identifiers (AI’s) in Code 128 or EAN128?

Check Translate Escape Sequences (value must set to True) and insert the following escape codes into
the data text (see also ESC Sequences):

TEC-IT Datenverarbeitung GmbH Seite: 69
www.tec-it.com

Control
character

Escape
sequence Bar code type(s)

FNC1 \210 Code 128, EAN128, UCC128

FNC2 \211 Code 128, EAN128, UCC128

FNC3 \212 Code 128, EAN128, UCC128

FNC4 \213 Code 128, EAN128, UCC128

FNC1 is the function number character and is used as field separator in connection with variable
length data fields.
Note: Application Identifiers (AI) are entered unformatted without parentheses, but the “human
readable text” will appear formatted (incl. parentheses).

FNC1 must be appended to all application identifiers with variable length when the maximal length of
the field in question was not filled completely and when it was not the last AI in the bar code. Do not
append an FNC1 if there is a fixed length AI or it is the last AI in bar code. Please note that FNC1
must be inserted by your application (TBarCode can’t determine correct placements of required
FNC1-characters).

7.1.12 How can I set the Module Width to a constant value?

Per default the bar code width adapts automatically to the object width (= to the dimension of the
bounding rectangle).

By setting the object property "ModuleWidth" to a specific value, the resulting bar code width
depends on the amount of encoded data and – on the module width (= narrowest bar/space width).
Please note, that not the dimension of the bounding rectangle (the object dimensions) is changing,
the bar code size within the bounding rectangle is changing.

Example: Code128 needs a minimum module width of 0,19 mm, i.e. we select 0.25mm as module
width. The unit of the "ModuleWidth" is set in 1/1000 mm. In Visual Basic we use the following
instruction: obj.ModuleWidth = “250”

The dimensions of the bar code object are defined by your settings in design mode of your
application or by the properties width and height. Keep in mind to choose an object size that ensures
that the bar code is not truncated (clipped), especially when using the bar code on a form. The
dimension of the bounding rectangle must be set according to the largest data content that can
occur. For printing: in order to examine the occurrence of clipping for each printing cycle, you can set
the object property MustFit to true (VB syntax: obj.MustFit = TRUE). As soon as the bar code within
the object becomes larger than the bounding rectangle, a standard exception is raised (Handling in
VB: On Error Goto ErrHandler).

If you would like to vary the external dimensions of the barcode object according to the width of
the bar code (with constant module width), you can determine the dimensions of the bar code using
the property "BCWidthHdc". This is done in the following VB example:

 BCobj.ModuleWidth = “250”

DoEvents

 Printer.ScaleMode = vbPixels

Xsize = BCobj.BCWidthHdc (Printer.hDC, 1, 1, eMUPixel)

 BCobj.BCDraw Printer.hDC, 500, 500, Xsize, Printer.ScaleY(20,
vbMillimeters, vbPixels)

TEC-IT Datenverarbeitung GmbH Seite: 70
www.tec-it.com

In the example a fixed height of 20 mm is used - the x-dimension (width) is adapted to the current
bar code. The value pair 1, 1 (for X,Y) is irrelevant since we don’t know the final size of the bar code
yet. If necessary, the starting point of 500, 500 [Pixels] could be converted with the ScaleX and
ScaleY methods into absolute values [mm] in order to be independent of the actual printer resolution.

Image-Files: This workaround by reading the BCWidth property could also be used when producing
Image-Files (BMP, JPG...). But we recommend other ways to do this by using the property
„CountModules“ (look at section Resolution and Readability...).

7.1.13 I am changing the font resolution (large fonts, 120dpi) and get a clipped off bar code
with SaveImage?

This can happen, if you set the ModulWidth property to a specific value. For image saving, the
screen device context is used. This changing resolution of the screen influences the module width
calculations.
If you don’t set the module width to a specific value, you will see that the bar code will fit into the x
and y parameters of SaveImage.
If you need a specific module width for your application (e.g. 3 pixels), you can calculate the output
size of the image using the number of horizontal graphical modules (CountModules property) and
then multiply the value of CountModules with 3 (to get 1 module = 3 Pixels wide). With this method,
the image size will adapt automatically depending on number of horizontal bar code modules.
For 2D symbologies divide the value of CountModules through the number of data rows to get the
correct X dimension value. Contact our support for help with 2D symbologies.

7.1.14 I am using PrintForm in VB and the barcode is not readable

If bar code objects in a form are drawn with (low) screen resolution (and not with printer resolution) –
the barcode may become unreadable.

To get a workaround the module width of the bar code has to be adapted to the resolution of the
screen:

 This can be achieved by using the CountModules property (see below).
 Or you use the new TBarCode4 property OptResolution = true

Using the CountModules Property:

A bar code consists of so called “modules” – small elements that can be either a bar or a gap (empty
space). If you set the width of the bar code (the number of Pixels on the screen) exactly to the
number of modules in the bar code, the resolution problem can be avoided. Therefore a bar-module
is represented by a black pixel and a gap-module is represented by a white pixel.

To set the width of an object to a value in Pixel, you have to set the VB Scale-Mode of the form to 3
(Pixel)!

Sample VB Code for Code 128 (or other bar codes without a space around like Code 30, 2of5 IL,…)

TEC-IT Datenverarbeitung GmbH Seite: 71
www.tec-it.com

‘ set the width of the TBarCode object according to the CountModules property

BCObject.text = barcode_data

BCObject.width = BCObject.CountModules

Sample VB Code for PDF417

‘If you use a PDF417 as the bar code symbology use this code:

BCObject.text = barcode_data

BCObject.width = BCObject.CountModules / BCObject.CountRows

BCObject.height = BCObject.CountRows * 5

Form1.PrintForm

Please consider: in our example the module width adapts to 1 Pixel automatically. If you set the
module width to another value (e.g. by using the ModulWidth property) the solution above doesn’t
work! In this workaround the bar code width also depends on the amount of data.

7.1.15 What is the maximum data capacity of PDF417?

We have found in the PDF417 specification the following limits:

Maximal data characters without error correction (PDF417_ECLevel = 0):

Numerical data only: 2710 digits
Bytes: 1108 (also used for control characters to switch to lowercase letters)
Text characters: 1850 (only uppercase letters used [A..Z])

If you mix the character types (as shown above) the maximum data capacity cannot be predicted
exactly (due to internal compression and character set switching - this is by design of PDF417).

If you use a combination of digits and text (lower & uppercase letters) the maximum data capacity
would be about 1100 to 1200 characters - but this can vary due to your input data. If you want to
encode large data amounts we recommend using multiple symbols (or to use only capital letters).

7.1.16 When using ESC-Sequences they are not encoded (and the scanners signals an
error) - why?

Escape sequences are several characters starting with „\“ and enable encoding of a special
character. They are translated into this special character when the bar code is created.

Escape sequences are only translated if this translation is explicit activated.

Otherwise you find the original character sequence (e.g. the two characters „\“ and „t“) in your data
and not the special character you wanted to encode (e.g. TAB). Some scanners don’t „like“ the
backslash – so you might also become reading problems.

To activate the Translation of Escape sequences

TEC-IT Datenverarbeitung GmbH Seite: 72
www.tec-it.com

• Within the property pages of the TBarCode you have to mark „Translate Esc-Sequences“.

• Or (for programmers): within the API of the ActiveX object there is the property
„EscapeSequences“ that has to be set to „True“

More about that topic: ESC Sequences

7.1.17 How can I save the MaxiCode symbol with a higher image resolution?

You have to set the ModuleWidth property to a higher value (as it is by default) – and increase the
values for Xsize / Ysize at saving.

VB Sample for saving a MaxiCode symbol with a higher image resolution:

FlName = "Maxicode.bmp"

TBarCode.Text = BarCodeText

TBarCode.Barcode = eBC_MAXICODE

'Use nRatio to enlarge or reduce image size

nRatio = 2

TBarCode.ModulWidth = 1500 * nRatio

DoEvents

YSize = 208 * nRatio

XSize = 215 * nRatio

TBarCode.SaveImage App.Path & "\" & FlName, eIMBmp, XSize, YSize,
72, 72

'Hint: When printing we recommend to use the standardized size of
MaxiCode

'Height: ~24.4 mms; Width: ~25,2 mms

Background:
If you don’t print the barcode by the BCDraw-Method but by using a BMP-bitmap, you have to
increase the x/y-dimension of the image. BMP uses a fixed resolution of 72 dpi. Increasing the
dimensions to get more Pixels results in a bigger MaxiCode symbol at printout. But you have to pay
attention to the standardized size of MaxiCode. You have to scale (to “shrink”) the BMP bitmap to the
proper size at printout. If you save MaxiCode as JPG-File you are able to adapt the horizontal and
vertical dpi-resolution of the file to get the proper size.

7.1.18 How to draw bar code to image or to printer device context

Below is a sample code which is taken from the DLL sample.
The ActiveX also supports the BCDraw method, for drawing to a device context.
Draw to image:

TEC-IT Datenverarbeitung GmbH Seite: 73
www.tec-it.com

 imgrect.Left : = Image1.ClientRect.Left;
 imgrect.Right : = Image1.ClientRect.Right;
 imgrect.Top : = Image1.ClientRect.Top;
 imgrect.Bottom : = Image1.ClientRect.Bottom;
 eCode:= Ax.BCDraw (pBC, Image1.Canvas.Handle, imgrect);
 Image1.Refresh();

Print out:

Prntr : = Printer;

 Prntr.BeginDoc;

 pRect.Left : = trunc (Prntr.PageWidth / 3);
 pRect.Top : = trunc (Prntr.PageHeight / 4);
 pRect.Right : = trunc (Prntr.PageWidth - pRect.Left);
 pRect.Bottom : = trunc (pRect.Top + (Prntr.PageHeight / 5));

 // Draw bar code to the coordinates of pRect (in Pixel)

eCode := Ax.BCDraw (pBC, Prntr.Handle, pRect);

 Prntr.Refresh();

 Prntr.EndDoc;

7.1.19 I always get an error when calling SaveImage method?

If SaveImage doesn’t work, please check, whether you have installed VIC32.dll. Otherwise it can be
that you don’t have write permissions to the directory you want to write to (e.g. in web application).

7.1.20 When using SaveImage, my barcode reader can’t scan the symbol / image!

The bars and spaces in the symbol must have precise widths. By saving the symbol to a bitmap
image, the widths are adapted to the matrix of the bitmap - depending on its resolution less or more
deviations occur. The lower the resolution, the more differences in width of bars/spaces appear.

Suggested workarounds:

 Saving the bitmap with higher amount of pixels is a good method to avoid such problems.
Save the image with twice or triple of normal width/height and then shrink it back for printing
(if that’s possible in your application). Please read also the chapter Resolution and
Readability.

 Also using the OptResolution Property of TBarCode4 (set it = true) can avoid such problems.
It adapts the module width automatically to the next lower pixel resolution. That can lead to
shrinking of the symbol. Make it wide enough to avoid too small bar codes.

 Set the width of the bar code corresponding to the number of modules in the symbol
(CountModules property).

Background: module width and the bitmap resolution:

If you save or print the bar code using a resolution of 300 dpi, one pixel will be 0,003333 inch =
0,08466 mms wide. The module width should not go under 0.19 mms - so select a multiple of

TEC-IT Datenverarbeitung GmbH Seite: 74
www.tec-it.com

0,08466 mms for the module width to get best results for scanners, e.g. 3 * 0.08466 = 0,254 mms for
the module width. By selecting a multiple of the width of a pixel the tolerances in width for the bars
and spaces are minimized.

• The module width can be set either with the ModulWidth property (ActiveX) or by
BCSetModWidth (DLL) in Hi-Metric (1/1000 mms).

• Recommended: to set the Module Width indirect by the bar code size, you can use the
CountModules method. If you set the bar code width to the number of modules
(CountModules), you will get automatically a module width of 1 pixel. If you set the bar code
width to 2 times of CountModules, you will get a module width of 2 pixels (and so on). This
works for all bar codes with integer print ratios, e.g. Code128, Code39 (see Reference
Table).

Code 11 / Code 2/5 Std: if you have print ratios that are not integer ratios, you must use a number of
pixels that can represent all module widths within the print ratio (e.g. you have a print ratio of 1:1.5
select 2 pixels as for the module width 2 : 3 pixels = 1:1.5 print ratio = OK).

7.1.21 How can I use TBarCode within FoxPro?

Insert TBarCode into a Form:
- Select [OLE Container] from the Standard Toolbox
- After drawing the outlet of the OLE container, an “Insert object” dialog is opened. Select

TBarCode4 (Insert Control) and confirm with OK

If you want to print bar codes in reports or labels, you need a table with a specific column, in which
the TBarCode ActiveX must be stored as OLE Control (data type general). This data field must be
initialized (before use) with the data structure of a bar code object. For this purpose you need an
instance of a TBarCode object as template (e.g. on a form, it may be invisible).

Example code for the initialization of the data fields with a bar code object:

FOR n = 1 TO 10

 INSERT INTO Table1 FROM MEMVAR

 APPEND GENERAL Table1.BC CLASS TBarCode4.TBarCode4

 WITH THISFORM.[Name of the TBarCode object instance]

 .CONTROLSOURCE = "Table1.BC"

 .REFRESH

 .barcode = 20 && Barcode-Type = Code128

 .TEXT = "000070000041"

 .printdatatext = .T.

 .BACKCOLOR = 16777215

 .FORECOLOR = 0 && 16711680 -> (blue)

 .REFRESH

 ENDWITH

NEXT

After this code has been executed, an OLE Picture/ActiveX Bound Control can be inserted into a
Report or Label Form. In our sample, you have to specify “Table1.BC” as data source (field). Please

TEC-IT Datenverarbeitung GmbH Seite: 75
www.tec-it.com

take a look at our FoxPro-Sample, which can be downloaded at http://www.tec-it.com/Download
(Samples)!

7.1.22 How to speed up the generation and printing of QR–CODE for large numbers?

The following hints are also useful for other 2D symbologies (e.g. Data Matrix…)

You could:

- Set the QR-Code mask pattern to a constant value (setting could affect readability, make
tests before you choose a value).

- Set the symbol size to a constant value (property “symbol version”) if the symbol should
have always the same size.

- Set the error correction level to "low" (if you don't have dirt, scratches or other possible
surface detractions).

- Optimize database speed

Only relevant for programming:

- Each time, if a TBarCode property is changed by your program (e.g. text, barcode type, QR-
code setting, ...) the bar code is internally recalculated - so if you set all properties
each time you need a bar code, you need much more CPU time.

- Solution = set the configuration properties of the ActiveX Control only one time at startup of
your program, and do only the changing of the text property for each bar code, so the bar
code is only calculated one time.

7.1.23 What can I do to optimize PDF417 for sending through a desktop analogue FAX?

For dealing with resolution issues, you should download our Barcode Studio Software from
http://www.tec-it.com/download/

- Fax works with 200 dpi, so enter 200 in the DPI input field.
- Then enter the text you want to encode and select PDF417
- Next make the symbol the same size as you use for printing.
- Now the "quality watch" shows you the tolerance / pixel aberration in per cent.

We know from bar code standards that up to 15% is OK and up to 28% (+/-2%) is decoding with
most scanners. But more than 30% can make serious problems.

Now what you can do:
- Make the module width a multiple of 1 Pixel (but >= 0.190mm), e.g. make the module width

= 0.381 mms = 3 Pixels. You will see that the tolerance shows a maximum quality.
- Adapting the module width to the available pixel width (depending on dpi) is the best way to

overcome resolution problems.

http://www.tec-it.com/Download
http://www.tec-it.com/download/

TEC-IT Datenverarbeitung GmbH Seite: 76
www.tec-it.com

- For PDF417 make sure that the line or row height is not lower than 3 times the module
width.

After you have set up these parameters with your bar code we suggest that you send test faxes
and make test readings with your scanner in order to see if the reading quality increased.

	
	1 General
	1.1 About TBarCode ActiveX
	1.1.1 Why you should use TBarCode ActiveX:
	1.1.2 Difference Registration / Licensing
	1.1.3 OPT – Optimized Pixel Technology
	1.1.4 Limitation of the demo version

	1.2 Download and Setup
	1.3 Support
	2 Licensing
	2.1 License procedure
	2.1.1 Manual input
	2.1.2 Licensing via program code (Developer)
	2.1.3 Samples

	3 Property Pages ActiveX
	3.1.1 Invoking
	3.1.2 General
	Bar code type (Symbology)
	Orientation
	Encoded Data
	Back style
	Print text
	Above symbol
	Text distance
	License Information
	Button “About...”
	Button „License...“

	3.1.3 Advanced
	Module width [1/1000 mm]
	Print ratio
	Format/subset
	Guard width [1/1000 mm]
	Notch height [1/1000 mm]
	Check digit
	Translate escape sequences
	Symbol must fit into rectangle
	Suppress error message

	3.1.4 PDF417
	Rows [3..90]
	Columns [1..30]
	Row height [1/1000 mm]
	Error correction level
	Macro PDF417
	Error correction

	3.1.5 MaxiCode
	Mode
	Undercut [0..100]
	Preamble Options
	Structured Append
	Structured Carrier Message (SCM).

	3.1.6 Data Matrix
	Code format
	Symbol size
	Show as rectangle
	Structured Append

	3.1.7 QR Code
	Code format
	Symbol version
	Error correction level
	Mask Pattern
	Structured Append

	3.1.8 Codablock F
	Rows [2..44]
	Columns [4..62]
	Row height [1/1000 mm]
	Separator height [1/1000 mm]
	Code format

	3.1.9 Font
	
	3.1.10 Color
	BackColor
	ForeColor
	TextColor

	4 Program Interface (API) ActiveX
	4.1 General
	4.1.1 Prog ID, Class ID

	4.2 Properties
	4.2.1 General (for 1D and 2D types of bar codes)
	4.2.2 PDF417 Properties
	4.2.3 MaxiCode Properties
	4.2.4 Data Matrix Properties
	4.2.5 QR Code Properties
	4.2.6 Codablock F Properties
	
	4.2.7 Barcode Properties within Event-Handlers

	4.3 Methods
	4.3.1 Methods for Standard Applications
	4.3.2 Methods for Web Applications
	4.3.3 Error Handling
	

	4.4 Events

	5 Program Interface (API) DLL
	5.1 General
	5.1.1 Basic Sequence

	5.2 Function Reference
	5.2.1 Init- / Deinit Functions
	5.2.2 Set / Get Functions (Properties)
	RSS Properties
	5.2.3 Set / Get Functions for PDF417
	5.2.4 Set / Get Functions for MaxiCode
	5.2.5 Set / Get Functions for Data Matrix
	5.2.6 Set / Get Functions for QR Code
	5.2.7 Set / Get Functions for Codablock F
	
	
	5.2.8 Methods (Drawing, Licensing…)
	5.2.9 Callback functions for user-defined drawing routines

	6 Appendix
	6.1 Bar Code Reference
	6.1.1 Enumeration and Default Settings
	6.1.2 Related Bar Code Symbologies

	6.2 Parameter
	6.2.1 Check Digit Enumeration
	Enumeration

	6.2.2 Ratio, RatioHint (Ratio Format)
	6.2.3 Format
	6.2.4 ESC Sequences and Control Characters
	Application Identifier

	6.3 MaxiCode
	6.3.1 Extended Documentation
	6.3.2 Setting SCM parameters

	6.4 Japanese Postal (Customer) Code
	A) Direct Encoding Mode
	B) Japanese Extraction Mode

	6.5 Korean Postal Authority Code
	6.6 Error Codes
	6.7 Image Types
	6.7.1 Image Data Format
	6.7.2 Compression Modes
	6.7.3 Resolution and Readability

	7 FAQ’s
	7.1.1 How to add the leading and trailing ‘*’ for Code 39?
	7.1.2 How to add the check digit to Code 39?
	7.1.3 How can I add bar codes to a mail merge document?
	7.1.4 How can I determine the number of PDF417 Code Words?
	7.1.5 How to add the leading and trailing ‘A’ (or B or C or D) for CODABAR?
	7.1.6 How can I change the module width to 15 mils in my web application (ASP) ?
	7.1.7 How to use a specific subset in Code 128?
	7.1.8 How to use the compressed mode of Code 128?
	7.1.9 How can I get a PDF417 symbol with standard aspect ratio (3:2) ?
	7.1.10 How to license the product from within my application?
	7.1.11 How to use Application Identifiers (AI’s) in Code 128 or EAN128?
	7.1.12 How can I set the Module Width to a constant value?
	7.1.13 I am changing the font resolution (large fonts, 120dpi) and get a clipped off bar code with SaveImage?
	7.1.14 I am using PrintForm in VB and the barcode is not readable
	7.1.15 What is the maximum data capacity of PDF417?
	7.1.16 When using ESC-Sequences they are not encoded (and the scanners signals an error) - why?
	7.1.17 How can I save the MaxiCode symbol with a higher image resolution?
	7.1.18 How to draw bar code to image or to printer device context
	7.1.19 I always get an error when calling SaveImage method?
	7.1.20 When using SaveImage, my barcode reader can’t scan the symbol / image!
	7.1.21 How can I use TBarCode within FoxPro?
	7.1.22 How to speed up the generation and printing of QR–CODE for large numbers?
	7.1.23 What can I do to optimize PDF417 for sending through a desktop analogue FAX?

